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ABSTRACT

This report is a qualitative assessment of the public and worker risk involved with the operation of
a liquefied natural gas (LNG) vehicle refueling facility. This study includes facility maintenance and
operations, tanker truck deliveries, and end-use vehicle fueling; it does not treat the risks of LNG vehicles
on roadways. Accident initiating events are identified by using a Master Logic Diagram, a Failure Modes
and Effects Analysis, and historical operating experiences. The event trees were drawn to depict possible
sequences of mitigating events following the initiating events. The phenomenology of LNG and other
vehicle fuels is discussed to characterize the hazard posed by LNG usage. Based on the risk modeling and
analysis, recommendations are given to improve the safety of LNG refueling stations in the areas of
procedures and training, station design, and the dissemination of “best practice” information throughout the
LNG community.




SUMMARY

This report is a qualitative assessment of the public and worker risk involved with the operation of a
liquefied natural gas (LNG) vehicle refueling facility. A cryogenic fuel for vehicles is very different from
the petroleum fuels presently in use. That is, LNG rapidly boils to a gas, it can cause cryogenic burns from
skin contact, and exposure can cause brittleness in many engineering materials. This study includes facility
maintenance and operations, tanker truck deliveries, and end-use vehicle fueling; it does not treat the risks
of LNG vehicles on roadways. The qualitative risks have been outlined in Tables 1-2 and 1-3.

The report gives a description of refueling facilities visited and identifies the technologies involved
for system familiarization. Then, accident initiating events are identified by using a Master Logic
Diagram, a Failure Modes and Effects Analysis, and historical operating experiences. The event trees were
drawn to depict possible sequences of mitigating events following the initiating events.

The phenomenology of LNG and other vehicle fuels is discussed to characterize the hazard posed
by LNG usage. Physical parameters, methane flammability, and LNG issues such as weathering, rollover
and geysering are discussed. Distinctions in phenomena between LNG peakshaving plants and refueling
stations are explained and evaluated.

Based on the risk modeling and analysis, recommendations are given in the conclusions section.
These recommendations to improve the safety of LNG refueling stations are in the areas of procedures and
training, station design (especially leak pathway analysis), and fostering the dissemination of “best
practice” information throughout the LNG community.




FOREWORD

This risk assessment cites several past incidents in the use and handling of liquefied natural gas. We
have relied on literature searches, the U.S. Department of Transportation database, and the memory of
experts in the LNG field to gather information on these incidents. If any readers of this report know of
incidents not cited and can provide information on such incidents, they are invited to contact
Dr. Steve Herring, 208-526-9497, sth@inel.gov or Lee Cadwallader, 208-526-1232, lcc@inel.gov.

Furthermore, if any readers can suggest other members of the LNG community to whom this report
should be sent, please notify us at the phone number or e-mail address listed above.
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ACRONYMS

. ACGIH American Conference of Governmental industrial Hygienists
ANS American Nuclear Society
ASME American Society of Mechanical Engineers
ATA American Trucking Association
BLEVE Boiling Liquid Expanding Vapor Explosion
"‘CAl LNG Release due to Construction Accident, lsolable
CAU LNG Release due to Construction Accident, Unisolable
CFR Code of Federal Regulations
CGA Compressed Gas Association
CNG Compressed Natural Gas
DBT Ductile Brittle Transition
DMIM Design, Manufacturing, Installation, or Maintenance
DOT Department of Transportation (federal)
ED Early Detection
EE External Event
ER Early Recovery
EUV End Use Vehicle
FCV Flow Control Valve
FMEA Failure Modes and Effects Analysis
GAO Government Accounting Office
GF '‘Guaranteed Failure'
GRI Gas Research Institute
HF Hose Failure
IE Initiating Event
LGFSTF Liquefied Gaseous Fuel Spill Test Facility
LNG Liquefied Natural Gas
LPG Liquefied Petroleum Gas (usually propane)
LR Late Recovery
MLD Master Logic Diagram
NGV Natural Gas Vehicle
oD Driveaway (operational event)
OF Filling Error (operational event)
oM Maintenance Error (operational event)
PFl Pipe Failure, Isolable
PFU Pipe Failure, Unisolable
PPE Personal Protective Equipment
PRA Probabilistic Risk Assessment
PSV Pressure Safety Valve
PT Pressure Tank
RC Release Containment (i.e. the release is contained in a secondary
RV FO Relief Valve Fails Open
, RVFTO Relief Valve Fails to Open
i SFI Seal Failure, Isolable
SFU Seal Failure, Unisolable
Si Secondary Impact Prevention
) ST Storage Tank




STF
THRP
TLV
TTF

UVCE
USNRC
VA

VF

VFi
VFU

Storage Tank Failure
Tetrahydrothiophene

Threshold Limit Value

Truck Fuel Tank Failure

Tanker Truck Tank Failure
Unconfined Vapor Cloud Explosion
U.S. Nuclear Regulatory Commission
LNG Release due to Vehicular Accident
Valve Failure

Isolable Valve Failure

Unisolable Valve Failure
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Qualitative Risk Assessment for An LNG Refuelihg
Station and Review of Relevant Safety Issues

1. INTRODUCTION

1.1. Background

As part of the efforts currently under way to increase the use of natural gas in transportation
applications, technology is being developed to enable the widespread use of liquefied natural gas (LNG) as
a fuel. LNG, as a cryogenic liquid, has inherently different characteristics than the gasoline and diesel fuel
we are accustomed to using. These differences include the rapid evolution of a gas that is lighter than air at
room temperature, the potential for cryogenic burns, and changes in materials properties at low
temperatures. The safe handling and use of LNG requires training and technology development. One of
these technology development activities includes the performance of safety assessments for LNG systems.
Such assessments can assist in the identification and prioritization of potential system weak points and
associated improvements.

A failure modes and effects analysis (FMEA) has been performed for LNG-fueled trucks (ATA,
1995). This study documents a qualitative risk assessment for LNG refueling stations, part of the
necessary infrastructure for an LNG-based trucking industry.

Risk assessment is a particular type of safety analysis aimed at: a) identifying accident scenarios of
potential concern; and b) determining the probability and consequences of these scenarios (Kaplan and
Garrick 1981). In a quantitative risk assessment, scenario probabilities and consequences are quantified
and treated in a formal mathematical framework. In a qualitative risk assessment, scenarios are prioritized
based on qualitative assessments of the absolute or relative probabilities and consequences. Qualitative '
risk assessments (of which FMEA is one form) is often a useful prelude to quantitative risk assessment, as
it can identify scenarios where analysis resources should be focused. Both qualitative and quantitative risk
assessment enable the prioritization of system design and operations alternatives based on an explicit
consideration of accident likelihood and severity. ‘

1.2. Obijectives and Scope

The overall objective of this study is to generate safety lessons and insights useful to the
development of LNG refueling stations. The specific objectives of this study are threefold:

. To identify and characterize public and worker risk and safety issues associated with the
operation of LNG refueling stations for long-haul trucking

. To summarize the current state of knowledge regarding LNG safety
. To develop recommendations concerning:

- Improvements to current design and operational practices




- Areas requiring additional research and/or analysis.

The study scope is limited to activities within the boundaries of refueling stations. However, it does
include some issues generic to all LNG handling activities. It addresses issues not directly associated with
the process of refueling trucks (e.g., fuel storage, station refueling, truck maintenance). The study also
addresses current station designs and operational practices. Credit for improved practices since past
accidents (e.g., the Cleveland tank failure in 1944) is taken as appropriate. Conversely, no credit is taken
for potential future improvements in equipment or practices (¢.g. in nozzles, instrumentation, or interlocks).
Finally, it should be noted that the analysis is performed at a generic level; hazards (e.g., storms) and faults
(e.g., refueling errors) believed to be relevant to most (if not all) stations are addressed, but system-specific
detailed fanits (e.g., failure of a particular piping segment or relief valve) are not treated. This generic
approach provides common lessons and insights for the industry, but may not be detailed enough to support
detailed system improvement studies.

1.3. Summary of Technical Approach

The approach employed in this study follows the general steps of most risk assessment studies. An
example description of the risk assessment methodology can be found in ASME 1995. A detailed
description of several of LNG stations can be found in GRI (1996).

In the system definition phase, data was gathered through site visits to three separate refueling
facilities in addition to an extensive literature search. Information was collected on typical system design
and operations, past events involving LNG, and LNG phenomenology relevant to accident occurrence and
mitigation. Special attention was paid to the review of the phenomenological data (e.g., concerning LNG
flammability and dispersion) in order to see if concerns raised in an earlier report (GAO 1978) and a recent
memo reiterating these concerns (Hunt 1996) are still warranted.

In the model construction phase, event trees (ANS 1980) were constructed to represent possible
scenarios following an initial fault (an "initiating event"). The event tree "top events," whose successes and
failures define the different possible scenarios, are based on the generic safety functions defined in Siu et al
1995. The initiating events were identified using a variety of methods, including master logic diagrams,
FMEA, review of past studies, and review of past events. The initiating events were grouped to keep the
analysis tractable; grouping was performed based on considerations of accident magnitude and
recoverability. The full set of initiating events considered is shown in Table 1-1. (Note that these initiators
are defined in terms of LNG releases instead of the root causes of the releases.)

In the model analysis phase, accident scenarios leading to onsite ignition or offsite release were
identified using the event trees constructed in the previous phase. Qualitative arguments concerning the
likelihood of failure events and pairwise comparison of scenarios were then employed to identify the
scenarios likely to dominate the risk from a given initiating event. Additional qualitative arguments based
largely on accident phenomenology, event timing, and magnitude were then made to prioritize these
potentially dominant scenarios.




1.4. Summary of Resulits

- The key results of this study are as follows.

° Sixteen potentially risk significant scenarios leading to an onsite fire or explosion and eight
potentially risk significant scenarios leading to a large offsite release have been identified (see
Tables 1-2 and 1-3). A number of differences in the operational practices and siting of the
three facilities visited can affect the likelihood and consequences of these scenarios and need
to be addressed (see below).

° Of the four safety issues raised in the Hunt memo, available data shows that two, the
possibility of unconfined vapor cloud fires/explosions and the adverse effects of direct
exposure to LNG vapor, are credible and of potential concern in this study. Additional study
is needed to determine the quantitative risk significance of these issues. The other two issues,
structural failure due to LNG exposure and the physical effects of a rapid phase transition of
LNG in water, appear to be of lesser concem to the refueling station.

Table 1-1. Initiating events treated in analysis.

Description Identifier

LNG release due to construction accident, isolable CAI
LNG release due to construction accident, unisolable CAU
LNG release due to external event EE
Hose failure HF

- Driveaway oD
Filling error OF
LNG release due to maintenance error OM
Pipe failure, isolable PFI
Pipe failure, unisolable ’ PFU
Seal failure, isolable SFI
Seal failure, unisolable SFU
Storage tank failure STF
Truck fuel tank failure TTF
Tanker truck tank failure TIT
LNG release due to vehicular accident VA

Valve failure




Table 1-2. Potentially dominant scenarios. large LNG release onsite.

Event Scenario Description

CAlI Isolable release due to construction accident, guaranteed failure of early recovery efforts,
ignition, failure of late recovery efforts

CAU Unisolable release due to construction accident, guaranteed failure of early and late recovery
efforts, ignition

EE Release due to external event, failure of early detection, guaranteed failure of early and late
recovery efforts, ignition

0D - Driveaway, failure of early recovery efforts, ignition, failure of late recovery efforts

OF Release due to error during tank filling process, failure of early recovery efforts, ignition,
failure of late recovery efforts

OM Release during maintenance due to error, failure of early recovery efforts, ignition, failure of
late recovery efforts

OM Release during maintenance due to error, failure of early detection, guaranteed failure of early
recovery efforts, ignition, failure of late recovery

SFI Isolable seal failure, failure of early detection, guaranteed failure of early recovery efforts,
ignition, failure of late recovery efforts

SFU Unisolable seal failure, guaranteed failure of early and late recovery efforts, ignition

STF Storage tank failure, guaranteed failure of early and late recovery efforts, ignition

TTF Truck fuel tank failure, guaranteed failure of early and late recovery efforts, ignition

TIT Tanker truck tank failure, guaranteed failure of early and late recovery efforts, ignition

VA Release due to vehicular accident, guaranteed failure of early and late recovery efforts, ignition

VFI Isolable valve failure, failure of early recovery efforts, ignition, failure of late recovery efforts

VFI Isolable valve failure, failure of early detection, guaranteed failure of early recovery efforts,
ignition, failure of late recovery efforts .

VFU Unisolable valve failure, guaranteed failure of early and late recovery efforts, ignition




Table 1-3. Potentially dominant scenarios: large LNG release offsite.

Initiati
Event Scenario Description

EE Release due to external event, failure of early detection, guaranteed failure of early and late
recovery efforts, failure of containment

OD Driveaway, failure of early recovery efforts, failure of late recovery efforts, failure of
containment

OF Release due to error during tank filling process, failure of early recovery efforts, failure of late
recovery efforts, failure of containment

OM Release during maintenance due to error, failure of early recovery efforts, failure of late
recovery efforts, failure of containment

STF Storage tank failure, guaranteed failure of early and late recovery efforts, failure of
containment

TTIT Tanker truck tank failure, guaranteed failure of early and late recovery efforts, failure of
containment

VA Release due to vehicular accident, guaranteed failure of early and late recovery efforts, failure
of containment

VFU Unisolable valve failure, guaranteed failure of early and late recovery efforts, failure of

containment

The recommendations stemming from this study concerning refueling station design and operational
practices are as follows.

Improvements should be made in procedures and training with respect to operational practices
(e.g., tank venting, use of grounding wires, use of personal protective equipment), improper
responses to alarms, and the performance of maintenance.

Station designs should account for: a) the possibility of LNG leakage along unexpected
pathways (e.g., past seals) to enclosed spaces; and b) the possibility of complete LNG
inventory losses. For example, methane detectors should be provided in all enclosed spaces,
facilities should be designed to prevent the buildup of methane in enclosed spaces (assuming a
leak), and appropriately sized bund walls should completely surround the main LNG storage
tank(s).

The dissemination of best practices among stations should be strongly supported.

These recommendations are based on field observations at nine different LNG refueling stations and
on information gathered from a number of papers and reports. To ensure that these recommendations are
applicable to the range of refueling stations across the country, and to better define the degree of risk
associated with the operation of these stations, the following studies are recommended.

An in-depth review of LNG accident/event reports (case studies) should be performed to:
a) provide a stronger link between experiential data and the failure scenarios identified in the
risk assessment; and b) identify historical failure mechanisms which are less likely or no
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longer relevant, due to advances in codes and standards, construction practices, operational
practices, etc. '

e A detailed review on post-1978 experimental data relevant to predicting LNG hazards should
be performed to provide a more definitive picture of what is known concerning LNG
dispersion and ignition under realistic accident conditions. This is needed to determine the
risk significance of the two Hunt memo issues of potential concern (i.e., unconfined vapor
cloud fires/explosions and direct exposure to LNG vapor).

Additional discussion on these insights and recommendations is provided in Section 5.

1.5. Overview of Report

Section 2 of this report describes typical LNG refueling station system design and operational
characteristics, as observed during the nine site visits performed in conjunction with this study. Section 2
also discusses relevant industry experience and reports concerning LNG accidents. Section 3 discusses the
qualitative risk assessment; it presents the methods and assumptions used to obtain the resuits shown in
Tables 1-2 and 1-3. The section concludes with a summarization of station-specific features observed in
the site visits which are relevant to the risk assessment results. Section 4 summarizes currently available
information on LNG behavior under normal and accident conditions, and addresses issues identified in the
GAO study and the Hunt memo. Section 5 provides a number of concluding remarks and
recommendations. Details underlying the analysis (e.g., an FMEA for a refueling system, initiating event
models, event trees, accident scenarios) are provided in Appendices A-D.




2. SYSTEM CHARACTERISTICS

This section describes general design and operational characteristics of LNG refueling stations. This
description is based on visits to nine separate facilities. Facility 1 is a temporary, restricted access,
remotely sited refueling facility servicing a privately owned and operated fleet of buses and utility vehicles.
Both LNG and compressed natural gas (CNG) fueled vehicles are serviced. The main LNG storage tank
has a 13,000-gallon capacity. A permanent refueling station is being built nearby, but is not included in
this analysis. Facility 2 is a publicly accessible self-service refueling station, which services both LNG and
gasoline fueled vehicles. It used a 10,000 gallon parked trailer tank for the LNG at the time of our visit.
The station is located in a semi-rural site (the nearest houses are about 200 feet away). Facility 3 is a
restricted access combined LNG/CNG facility servicing a fleet of public transit vehicles. It has three
20,000-gallon storage tanks and has an urban location. Facility 4 is a permanent, restricted access.
refueling facility serving baggage-handling vehicles at an airport. Facility 5 is a restricted access LNG
facility servicing a metropolitan fleet of public transit busses. It has two 30,000-gallon storage tanks.
Facility 6 is an older, permanent, restricted access LNG facility serving small transit vehicles. Facility 7 is
a permanent, restricted-access LNG refueling facility serving shuttle busses at a major airport. Facility 8 is
a restricted access LNG refueling facility serving a fleet of refuse-hauling trucks and a few outside
customers. Facility 9 also serves a fleet of refuse-hauling trucks and is the only station having an
underground storage tank.

During our visits at each of the stations, we agreed that the precise identity of the stations would not
be included in this report. However, we have differentiated among the stations by their location,
operational, and safety characteristics. We are free to say that Facility 1 is a temporary LNG/CNG station
at the Central Facilities Area of the INEEL.

To provide a perspective on the safety characteristics of LNG and LNG handling, this section also
discusses information on historical accidents involving LNG.

2.1. System Design

This section describes a typical LNG refueling system. Many of the details (e.g., the parameter
values) are derived from the system at Facility 1 (see Figure 2-1). Comments on variations in design are
provided as appropriate within the text.

The basic system centers around a large storage tank, approximately 13,000-gallon capacity, held at
an average pressure of 30 to 150 psig (many storage tanks operate at the 40-psig range). The LNG is
maintained at about -260°F at atmospheric pressure and about -128°F at 40 psig. The storage tank is
mounted on steel supports rather than buried underground. (Most petroleum fuel tanks are buried,
apparently to protect them from the heat of hot days, fires at the site, and vehicle collisions.) A berm or
dike (constructed of metal, concrete, or earth) several feet in height is provided around the LNG storage
tank as an impoundment area in case there is a tank leak (see 49CFR193.2149). In such a case, the berm
is intended to confine the liquid while it vaporizes, and to ensure that the vapor rises in the immediate area
of the tank. :

The storage tank is double walled with a stainless steel inner tank that withstands cryogenic
temperatures, and an outer wall of mild steel that cannot withstand cryogenic temperatures. Both the inner
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and outer vessels may use stiffening rings to give structural strength. The inner tank is supported or
suspended inside the outer vessel using low thermal conductivity materials such as stainless steel. The tank
annulus is evacuated to low pressure (on the order of 10°° Torr) to reduce convective and conductive heat
transfer from the ambient temperature outer vessel to the inner vessel. Some form of solid insulation, such
as layers of foil sheeting (multilayer insulation) or perhaps granular pearlite (older technology), is used in
the annulus to retard radiant heat transfer from the outer vessel to the inner vessel walls. The storage tank
inner vessel is protected by pressure relief valves (usually set at 110% of design pressure) and rupture disks
(usually set at 120% of design pressure) in case of overpressure. The annulus is also protected against
overpressure by a rupture disk that opens at a pressure differential of 5to 7 psig. This protection prevents
inner vessel buckling if the annulus is pressurized.

A thermally insulated pipe from the storage tank connects to a smaller volume pressure tank
(300 gallons in one facility; 500 gallons in another). The pressure tank is similar in design to the storage
tank; it has a vacuum insulation annulus and pressure relief protection. The pressure tank houses a
submerged centrifugal pump. The pump keeps the saturated LNG in the pressure tank at a high enough
pressure (e.g., under 200 psig) to fill a vehicle fuel tank, which usually operates between 110 and 180 psig.
(Note that the vehicle fuel tank relief valves at facility 1 are set at about 235 psig—vent to vehicle stack—
and 350 psig—vent to vehicle fuel tank compartment. If a high pressure pump is selected, scenarios where
the pump pressurizes the pressure tank past the setpoint of the vehicle’s first relief valve may be possible.
Generally, the pressure pumps have only a 60 to 85 psi differential pressure.) Refueling flow rates are up
to 50 gallons/minute. To refill a vehicle can require on the order of four minutes dispensing time. The
vehicle LNG tanks at Facility 1 are kept over 10% full to keep the tanks at cryogenic temperatures. Ifa
tank warms to room temperature, it is called a ‘hot tank,' and must be recooled to cryogenic temperature by
refilling with LNG; much boiled LNG is vented in this cooldown process. Fortunately the time to warm an
empty tank can be long (perhaps a day). If the refueling station also services CNG-fueled vehicles, the
boiled LNG may be routed to the compressors of the CNG fueling system instead of venting to the
atmosphere.

Pneumatic or solenoid operated flow control valves are used between the storage and pressure tanks.
From the pressure tank, valves control flow to the vehicle fill line. There is also a reverse flow check valve
in this section of piping to stop any flow from the vehicle tank to the pressure tank. The flexible metal fuel
transfer hose has a special nozzle fitting with a two-handle positive locking clamp and a pintle-operated
flapper valve so that the fill line must be connected to a vehicle before LNG can flow past the valve and
into the vehicle fuel fill line. The vehicle fill line also has an anti-reverse flow valve. Operators can use a
small diameter vent line to purge gas from the vehicle fuel tank ullage (the space above the liquid). This
process reduces the tank pressure and can speed up the refueling process. The vented natural gas is routed
up the small stack that protrudes on the top of the vehicle.

From the pressure tank, a pipe routes a small portion of LNG to a vaporizer that boils the LNG to
saturated vapor conditions in a finned vaporizer attachment which uses heat from the ambient air. This
type of vaporizer is called an ambient vaporizer. The boiled natural gas is returned to the ullage of the
station’s storage tank to maintain its pressure as the liquid level in the tank lowers during vehicle fueling
operations.

Other valves are used for filling the storage tank, for isolating tank instrumentation, for taking LNG
samples (to test for composition and purity), and for pressure relief protection of any pipe that could suffer
LNG tock in.' ("Lock in' is a term that means the trapping of a cryogen in an enclosed volume such as a
pipe section between two closed valves. If the liquid boils without pressure relief, the trapped volume of
LNG will increase in pressure up to 9000 psig in warming from —260°F to +70°F.)
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2.2. Station Operations

2.2.1. Station Refueling

Since none of the facilities visited have natural gas liquefaction facilities onsite, replenishing the
LNG inventory in the storage tank is accomplished by deliveries from a tank truck. The rate of delivery
naturally depends on the station usage. For the facilities visited, the delivery rates vary from once per day
to once a month. The transfer process nominally proceeds as shown in Figure 2-1, which is based on
discussions with Facility 1 personnel and a review of station design diagrams.

At Facility 1, the tank truck uses a flexible hose for the bottom fill operation, the liquid hose
connected at connector FC-4. Valve V-25 must be opened. (Note that an alternative is to top fill the
storage tank through connector FC-1.) The tank truck centrifugal pump is used to pump LNG into the
system. The tank truck pressure is on the order of 40 psig, so pumping is needed to pressurize the LNG to
system pressures. The transfer generally is performed using 4-inch diameter lines that can provide flow in
the 400 to 500 gpm range. Fuel transfer is metered when leaving the tank truck.

With proper flow velocity, there is adequate mixing of the new liquid emerging from the bottom
sparger with the existing liquid in the storage tank, so LNG stratification by temperature (i.c., rollover)
concerns are avoided. As the liquid level increases, the storage tank gas pressure increases and vapor
collapse occurs.

Depending on the facility, fuel delivery is performed by the delivery truck driver or by a dedicated
facility refueling technician. In either case, the fueler is supposed to wear personal protective equipment
(PPE) consisting of cryogenic gloves, shield glasses/face shields, and, perhaps, a rubber apron. Remotely
operated emergency shut off valves are provided to stop flow in case of a hose breach or loss of hose seal.
Tank trucks are bonded to dissipate static electric charge buildup when fluid flows. A bonding wire to the
system and a grounding wire to the earth may be provided to ensure proper dissipation of static electricity
for the fuel transfer.

2.2.2. End User Vehicle Refueling

End use vehicle refueling requires both filling the fuel tank with liquid and venting of the tank ullage,
as in station tank filling. Depending on the facility, refueling can be performed by the vehicle driver or by a
dedicated technician. At Facility Number 2 (a self-service station), the nominal procedure is as follows:

The driver pulls his or her vehicle up next to the LNG island, turns off the engine, sets the
parking brake, and gets out. The driver then authorizes the refueling at a keycard reader about 8 feet
from the pump, dons personal protective equipment (gloves, safety glasses, apron), opens the fuel
door on the vehicle, attaches the grounding wire, removes the nozzle from the pump and attaches it to
the fill connection, and then stands back to wait while refucling occurs.

As part of the automatic refueling process, the Facility 2 system uses a single refueling hose to
alternately vent and fill the vehicle fuel tank. It has a 30 to 45 second cycling time before starting to
vent or fuel. In addition, the system automatically vents the nozzle and hose before and after use, so
that no LNG is present during attachment and disattachment of the nozzle. The system will also -
automatically try to cool down a warm tank; that is, it will cycle through a vent, fill, vent pattern.
The system will go through this cycle three times before it automatically turns off. Sometimes the
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system interprets the pressure spike when LNG enters a warm tank as an indication that the tank is
full and thus a tank may not fill all the way. In such a situation, to finish refueling, the driver has to
use the keycard to reauthorize fueling.

Upon completion of refueling, the driver detaches the nozzle and grounding wire, replaces
these within the fuel pump barriers, closes the fuel door, takes off the PPE, gets in the vehicle, and
drives away.

This same basic process is also used at Facilities 1 and 3, although there are some differences due to
a) system design differences (e.g., Facility 1 does not require automatic venting); and b) the use of trained
fueling technicians at Facility 3. The technicians typically work in shifts and are supervised. As compared
with drivers who refisel their own vehicles, they might be expected to better adhere to procedures and safety
regulations and avoid short-cuts (because of the nature of their training and supervision). We noted
deviations from this expectation during sample site visits (e.g., involving the use of grounding wires).

Some safety-relevant variances from the nominal procedure observed by or related to the authors
during this study’s site visits are as follows:*

. Engines left running during refueling

. Parking brakes not set

. Lack of PPE use

. Lack of grounding wire use

. Manual operation of fuel tank vent valve to cool off the fuel tank and speed up refueling

e  Failure to remove hose followed by driveaway. Note that hose breakaway sections are a
routine component at the stations visited. These devices limited the amount of LNG lost in the
driveaway events.

Regarding the use of grounding wires, it is not clear that these are necessary for safe operation of the
system. (Some industry professionals question whether there is any risk since they have not seen static
electricity buildup or arcing for non-grounded systems.) However, situations where grounding wires are
administratively required but ignored by users may reflect a poor general attitude towards safety.

Manual operation of the fuel tank vent valve was observed at one of the facilities visited. This was
done by drivers to avoid having to wait for the system to automatically cycle or to avoid having to
reauthorize fueling (a lengthy process). No formal instructions or even encouragement had been given on
the use of vent valves; the process had been spread by word of mouth. As a result, misuse occurred. Some
drivers used the vent valve to excess just to make sure the system would pot cycle to venting. Considerable
quantities of LNG (condensed vapor clouds several feet in diameter) were observed coming out of the truck
vent pipes. Some drivers used the vent valve at the wrong time resulting in no effect and no change in

a. The variances on this list are not necessarily common occurrences; however, they have been observed by this study's authors
or by station personnel interviewed by the authors.
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system performance. They used it because they had heard it shortened refueling times, but they really did
not understand what they were doing.

Driveaway events in which the vehicle is driven away with the fill line still connected and which are
relatively common events at conventional fueling stations, have not yet been observed at Facility Numbers
1 or 2. They have been observed at Facility Number 3. The hose is provided with a coupling designed to
break if a driveaway occurs. Isolation valves are also provided to prevent significant fuel loss from the
station or from the vehicle. Events involving vehicle driveaway with the grounding wire still attached have
been observed at Facility Number 2. These have resulted in essentially no damage to the grounding wire -
clamp or the vehicle.

2.2.3. Other Activities

The variety of non-refueling activities taking place at the refueling station depends on the roles
played by the station. For example, Facility Number 1 is essentially dedicated to LNG/CNG vehicle
refueling; other vehicle activities (e.g., vehicle maintenance) occur well away from the refueling island. At
Facility 2, the LNG station is co-located with a gasoline station/convenience store. However, the
convenience store personnel do not operate the LNG station. The maintenance shop is located about five
miles from the station. Facility Number 3 is a full service LNG/CNG refueling facility; the maintenance
shops are onsite.

Maintenance of the station systems depends on the expertise and commitment of the station
personnel. Station personnel were unaware of written procedures, checklists, or worksheets for operations
or maintenance. Preventative activities can involve regular walkdowns of the system and regular
examination of system parameters monitored by the computer. Other maintenance activities include
dealing with valve stem packing leaks (tightening) and nozzle leaks (replacement). Lessons are often
learned by trial and error; facilities with years of experience (¢.g., Facility Number 3) may have smoother
operations.

2.2.4. Incident Response

The LNG fueling facilities visited have methane detectors and manual emergency shutdown devices
that trigger remote alerts to surveillance personnel (onsite or nearby). Designated staff affiliated with the
fueling facility are trained to respond to alarms. Their responses may range from simply resetting the
system following an erroneous shutdown, to using special fire extinguishers (e.g., Purple K—potassium
bicarbonate) to put out small fires. For larger incidents, emergency response teams will need to be called
in.

Fire departments local to LNG stations may have been specifically trained to contain a spill or fire.
Since water and traditional extinguishers can exacerbate an LNG fire, response teams need to be properly
prepared. Training programs for fire emergency management are provided by several organizations across
the country. To aid firefighters, LNG stations must display a placard designed by the NFPA. The placard
is required by U.S. DOT regulations. The placard is a four-part diamond showing the type of hazard being
faced.

Responses to incidents will vary from facility to facility. Some potential concerns with incident
response include:

. Manual overriding of alarms or emergency shutdown signals
12




o Possibly delayed responses to emergencies
e Lack of training/procedures for a major leak.

Regarding the first issue, the emergency shutdown buttons have been accidentally actuated a number
of times at one of the facilities visited, due to their poor location. (One such accidental actuation was
observed during the site visit.) The station users have been informed that they may use the reset button
once; if the system trips off again, they are to leave the station and call the designated response personnel.
Such a response procedure, while understandable in motivation, may lead to an incorrect action in the event
of a real emergency. (Operator neglect and/or override of alarms due to previous false alarms has been a
prime contributor to a number of significant oil spill events, as described by Siu et al, 1995.)

Regarding the second issue, one of the sites visited is monitored remotely. However, the designated
response personnel may be 5 to 20 miles away, depending on the time of day and the activities at the
station. Clearly, delays in notifying the response personnel and in getting these personnel to the site may be
long enough to preclude effective action in the event of a major incident. There have been times when an
emergency shutdown occurred and the station alert signal (a flashing red light) was on, but the response
personnel were not notified.

cha.rding the third issue, two of the facilities visited appear to have no written procedures for
emergency response and no equipment such as protective suits or self-contained breathing apparatus. The
staff at one facility, when asked what they would do in response to a major leak, candidly replied, “Run.”

2.3. Industry Experience

This section summarizes information collected on LNG refueling station events and on events
potentially relevant to LNG refueling stations. It also discusses information collected from a number of
safety studies relevant to this study.

2.3.1. Experiences at Refueling/Maintenance Facilities

Based on interviews conducted during the site visits, none of the facilities visited have experienced a
major LNG accident. Discussions with industry representatives showed that there have not been any major
LNG accidents at refueling stations. Some of the common events experienced include system leaks (e.g.,
valve stem packing leaks and fuel transfer nozzle leaks) and driveaways. One facility visited had
experienced a spill of 200 gallons of LNG; this involved a vehicle fuel tank union coming loose. The spill
pooled underneath the vehicle but eventually dissipated into the atmosphere without igniting. There was no
collateral damage to the vehicle or its tires.

One disadvantage of LNG (as compared with CNG) is the current inability to odorize the fuel.
Odorant may not be a benefit at a refueling site where small leaks will regularly occur, but odorant in a
vehicle fuel system would be an advantage for detection by the operator or passengers. The LNG industry
relies on methane detectors since odorant is not practical. Because the unodorized vapors are difficult for
humans to detect, gas leaks in confined areas are particularly dangerous. In 1993, technicians performing
maintenance on an LNG-fueled bus noticed a fuel leak. When they removed a floorboard to access the fuel
system, a significant amount of gas from vaporizing LNG accumulated in the bus compartment. The on-
board methane detection system was triggered, and shut down the bus as designed. The technicians,
however, decided to override the system and attempt to drive the bus out of the maintenance garage. When
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the ignition switch was turned, a circuit breaker arc ignited the accumulated methane inside the bus,
resulting in a small explosion. The technicians were not injured, but the bus windows were destroyed.

This event provides further illustration of the potential seriousness of the problem discussed in
Section 2.2.4 and by Siu et al (1995): neglect and/or overriding of alarms, which may be habitual and even
sanctioned, sometimes leads to serious consequences. It should be noted that following this event, several
preventative measures were implemented by the company that owned the bus. Self-venting roof hatches
were installed in all LNG buses. Vehicle equipment inspection and maintenance programs were formalized.
Training and procedures were implemented for safe practices. These measures have been duplicated by
other programs.

Other incidents reported by the industry (NGV 1996) have involved minor injuries due to cryogenic
liquid burns from LNG during refueling and superficial burns from methane vapor flash fires during fuel
system dismantling. In one case, an untrained worker received cryogenic burns to his hands while handling
the LNG refueling components. Another instance resulted in a worker's beard being singed when methane
was released from a dismantled LNG fuel system and was ignited.

A risk assessment was performed for indoor refueling of mass transit buses (SAIC 1990). Although
the study deals with diesel and CNG rather than LNG, it is of interest because it addresses refueling issues.
Note that CNG tanks are not insulated, whereas LNG tanks are double-walled steel cryogenic storage
vessels. Normally the vacuum insulation has a temperature difference of about 200°K and maintains the
fuel as a liquid for several days. During a fire, the temperature difference would be as much as 1200°K,
shortening the hold time by a factor of about six. Industry tests have shown that short-duration (10-15
minute) fires do not increase the fuel pressure.

The five postulated accident scenarios compared in the SAIC study were:

1. A CNG bus with one-quarter full tanks is brought in for maintenance and is exposed to a fire
in the shop (careless disposal of smoking materials or an industrial fire).

2. A bus with full CNG tanks is brought in for maintenance and is exposed to the same fire
postulated in scenario 1. This bus vents much more gas due to full tanks.

3.  Abusis refueled inside a dual fuel shop (CNG and diesel fuel present). The bus leaks CNG
and an ignition source is present.

4. A CNG bus is refueled inside a dual fuel shop (CNG and diesel fuel present). The bus is
segregated from the diesel portions of the shop. The bus leaks CNG and an ignition source is
present.

5.  The same scenario as number four but with a dedicated indoor CNG refueling area.

Scenario 3 was found to be the most likely. The parameters most affecting the probability of this
and the other scenarios were the human error and relief valve failure rates. (The analysis used generic
failure rates from a variety of sources—apparently none of which include LNG or CNG industry
experience—when quantifying the likelihood of the scenarios.) The study made the following
recommendations:

. Develop redundant safety systems to keep refuelers from introducing ignition sources
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Ensure that operators are regularly trained and tested

Develop faster responding gas detection systems
Ensure proper maintenance of redundant ventilation and exhaust fans

Establish uniform indoor refueling standards and strictly enforce these standards.

Attempts to collect raw data on events at gasoline service stations and truck stops have been
unsuccessful to date.  No gasoline station operating experience reports or data compilations were found in
the literature. Contact with the U.S. Department of Transportation (U.S. DOT) revealed that they do not
collect these data. A detailed search for events (e.g., through reviewing data collected by fire departments
or insurance companies, or through reviewing newspaper accounts) was judged to be beyond the scope of
this study.

2.3.2. LNG Truck Tankers

One refueling station accident of potential concern involves LNG truck tankers, as these carry
considerably more LNG (on the order of 10,000 gallons) than a typical LNG fuel tank (on the order of
200 gallons). While this study has not identified any information on significant truck tanker accidents at
refueling stations (see the previous section), information is available on truck tanker highway accidents.

LNG truck tanker highway accidents are not common events, due to the relatively low amount of
volume transported. The GAO report cites 11 accidents occurring over the time period 1971-1977 (GAO
1978). Of these accidents, one involved the release of about 20% of the truck tank inventory and another
involved the release of about 5%. The rest of the accidents apparently had little or no release. None of the
11 accidents involved ignition of the LNG (although one of the events involved a gasoline fire). The GAO
report does report a number of propane tanker truck accidents that did lead to release and ignition.

A continuation of this risk assessment would be to investigate the transportation of other cryogenic
fluids, such as nitrogen, oxygen, and hydrogen, to determine the safety of highway transport. Initial review
of the U.S. DOT transportation incident log indicates that there have been few cryogen transport accidents.

A quantitative risk assessment was performed in 1991 on the transport of propane, gasoline, ethyl
alcohol, and hydrogen on selected highway segments (Kazarians 1997). In that study, the overall truck
accident frequencies range from 6 x 107 per vehicle-mile-year to 1 x 10 per vehicle-mile-year, based on
route-specific data. The conditional probabilities of spills given an accident, of ignition (immediate and
delayed) given a spill, and explosion given delayed ignition are shown in Tables 2-1 through 2-4. (These
probabilities reflect an outdoor environment; different probabilities are used for accidents in tunnels.) The
probabilities are based either on experiential data or engineering judgment; the study uses the results of
earlier transportation risk studies on gasoline (Rhoads 1978) and propane (Geffen 1980) to provide some of
the bases for its assumptions.
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Table 2-1. Conditional probabilities of spills, given a truck accident.

Fuel Small Spill* Large Spill’ Total
Propane 0.075 0.025 0.10
Gasoline ’ 0.09 0.07 0.16
Ethyl alcohol 0.09 0.06 0.15
Hydrogen 0.06 0.02 0.08
(Kazarians 1997)

a._"Small spills" involve 10% of tank inventory, "Large spills" involve 100% of tank inventory.

Table 2-2. Conditional probabilities of immediate ignition, given a spill.

Fuel Small Spill® Large Spill*
Propane 0.25 0.75
Gasoline 0.15 0.50
Ethyl 0.20 0.60
alcohol
Hydrogen 0.50 0.90

(Kazarians 1997)

a. "Smail spills" involve 10% of tank inventory; "Large spills" involve 100% of tank inventory.

Table 2-3. Conditional probabilities of delayed ignition, given a spill.

Fuel Small Spill® Large Spill®
Propane 0.68 0.23"
Gasoline 0.04 0.05
Ethyl alcohol 0.04 0.04
Hydrogen 0.45 0.09

(Kazarians 1997)

a. "Small spills" involve 10% of tank inventory; "Large spills” involve 100% of tank inventory.

b. Total contribution from scenarios involving: a) ignition when the vapor cloud edge is over the population edge, and b)

ignition when the vapor cloud center is over the population center.
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Table 2-4. Conditional probabilities of explosion, given ignition.

Fuel All Spills
Propane 0.33
Gasoline —
Ethyl alcohol —
Hydrogen 0.50

Kazarians, 1997

a. "Small spills" involve 10% of tank inventory; "Large spills” invoive 100% of tank inventory.

This fuel transport risk assessment does not analyze LNG truck tanker accidents. The limited GAO
data on LNG truck accidents discussed above indicate that the LNG spill probability may be less than or
equal to the propane spill probability (where a release occurs in roughly 10% of all reportable tanker truck
accidents and a large release occurs much less frequently). The physical characteristics of LNG tanks (low
pressure, stainless steel, double walls®) also provide an argument that the LNG spill probabilities should be
lower than those for propane. (A similar argument is used in the risk assessment to reduce the large spill
probability for ethyl alcohol tank trucks.) However, this argument cannot as yet be supported by the data.

Regarding ignition, the fuel transport risk assessment does not strongly distinguish between the
various fuels considered with respect to immediate ignition. (The ignition probabilities do not vary by
orders of magnitude.) On the other hand, it states that gasoline and ethyl alcohol do not "demonstrate much
vapor dispersion” and therefore employs order of magnitude lower delayed ignition probabilities for these
fuels. It should be emphasized that since the report's ignition probabilities appear to rely heavily on
engineering judgment; further investigation is needed to determine if these probabilities accurately reflect:
a) current event experience, and b) the appropriate ignition probabilities for LNG.

More recently, GRI (1994) published a report on safety issues of LNG fueled vehicles. Areas with
higher cryogenic leakage risk are differentially cooled sections, areas where hose or seal chafing can occur,
areas where pipes or hoses could be stressed, sections that trap cryogens (cryogens boil and build
pressure), and areas near relief valves. The report observes that LNG spills tend to occur in systems that
are initially being cooled down, during fuel transfers, and during LNG sampling. LNG releases can lead to
fires and vapor cloud deflagrations. The report also points out that breathing cold vapors from LNG

evaporation or boiling can damage the lungs.

b. Note that the double wall design provides an additional defense against immediate releases due to impact. However, it does
not provide complete redundancy; if the outer wall fails, air will leak in and the LNG will heat up, boil, and eventually escape
out of the tank relief valves.
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2.3.3. Other LNG Experience

This section discusses experiences with LNG and other cryogens used for automotive fuel. Since
LNG has been used for a fuel gas (i.e., household use in stoves, water heaters, and furnaces; industrial use
as a heat source), there is a breadth of experience in the literature. Two notable events involving LNG are
the Cleveland tank failure and explosion in 1944 and the Cove Point leak and explosion in 1979.

In the Cleveland event (October 20, 1944), a cylindrical storage tank owned by the East Ohio Gas
Company cracked and failed, releasing 144,000 > (10° gallons) of LNG. Most of the LNG vaporized and
dispersed, but some LNG overflowed the bund wall and entered the surrounding storm sewers. (The wall
had been designed assuming that the LNG release would be relatively slow, resulting in a slowly rising pool
level and significant evaporation. Thus, it was not sized to contain the entire tank inventory, nor was it
designed to prevent overflow by the LNG wave resulting from the rapid, catastrophic tank failure.) The
dispersing gas ignited from multiple ignition sources and the flames ignited gas in the sewers. The fire
caused failure of the supports of another tank, whose inventory was added to the fire. Flames over
2,800 feet high were reported, and there was destruction over a quarter mile radius from the cylindrical
tank. 128 people died in this event and hundreds more were injured. Property damage was estimated to be
over $6.8M in 1944 dollars ($62 million in 1997 dollars) (BOM 1946).

Lessons from this event include: a) the need to site large quantities of LNG more remotely; b) to not
use 3.5% nickel steel for tanks; ¢) to build higher bund walls; and d) to preclude ignition source contact
with flammable gas clouds (Zabetakis 1967).

In the Cove Point accident (October 6, 1979), a submerged pump for LNG transfer began leaking
past an electrical power wire penetration. Natural gas vapors leaked into a conduit and accumulated in an
electrical junction box located in a switchgear building some distance away from the leak. Although the
site had methane detectors, there were none in the building. When plant personnel performed a routine
operating check in the switchgear room, they noted leaking vapor. Two operators decided to remove power
from the pump so that it would not start and make the leak worse. The operators opened the motor starter
and an electrical arc from the control circuit apparently ignited the methane gas, killing one man and
injuring the second. There were no offsite consequences. As a corrective action, ventilated cabinets were
installed to route any gas to a non-hazardous location and disperse any leaks to the atmosphere (NTSB
1980).

This event, while less severe than the Cleveland accident, is notable because the natural gas vapors
propagated along an unanticipated pathway into a confined space. Another gas leakage event occurred in
an LNG plant in Montreal in 1972. Here, the gas leaked through an air line into the plant control room and
ignited (Van Horn and Wilson 1977). Design guidelines were revised after the Montreal and Cove Point
accidents to preclude future occurrences.

A report on LNG plant operating experiences gives insights into the types of events and accidents
that have occurred in peakshaving plants. These plants deliver natural gas fuel when needed to augment
the natural gas supply to meet the peak usage demand for residential and commercial usage. Peakshaving
plants store LNG during seasons of low demand and distribute gas to the pipeline distribution system
during seasons of high demand. Some of the components used at these facilities are similar to those used in
refueling stations. A major difference is that a peakshaving plant handles and vaporizes very large
quantities (up to a billion cubic feet of gas per day) of LNG. Another difference is that pipeline quality gas
stored at a peakshaving plant contained higher percentages of ethane and propane than the fuel used for
LNG vehicles.
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Reviewing peakshaving plant experiences can give insights into component faults. The off-normal
events that have occurred at peakshaving plants are: cold spots in storage tanks due to insulation settling,
failure of tank foundation heating systems, vaporizer fires, small leaks from valve stems, piping gasket
leaks, pump leaks, gas sensor false alarms (due to high winds, and sensor deterioration), false alarms of
thermal radiation sensors, damaged thermal sensors during venting operations, fire protection system
freeze-up due to cold weather, a few major leaks of gas (over 100,000 cubic feet of gas), electrical
equipment fires not involving natural gas, and 2 few natural gas fires involving vaporizers (Welker and
Schorr 1979). Due to the facility differences discussed above, some of the phenomena discussed for
peakshaving plants, e.g. vaporizer fires or tank foundation heating system failures, are not pertinent to
LNG refueling stations. However, these experiences do indicate a need for routme maintenance of gas
sensors, seals, and the rest of the LNG confinement boundary.

It is important to note that some of these events are not directly relevant to refueling stations. For
example, the refueling stations considered in this study do not use large foundation tanks for storage.
Instead, they use pressure vessel tanks mounted above ground. As another example, the vaporizer used at
peakshaving plants to quickly heat up LNG employs a combustion process and undergoes high thermal and
pressurization stresses. The vaporizers for refueling stations are passive ambient-temperature vaporizers
and deal with small quantities of LNG. The vaporizers in refueling stations are used to bring the liquid
close to saturation, rather than to produce large quantities of room temperature vapor.

Finally, Table 2-5 lists 2 number of accidents involving the transportation and handling of LNG.
This table includes the 11 LNG trucking accidents referred to in Section 2.3.2. Many of the other accidents
in this table involve LNG tanker ships. They are included because: a) some of the failure modes (e.g.,
overfilling, isolation valve failures, lightning strikes, high winds) appear to be generally relevant to a
refueling station; and b) they show that more often than not, the consequences of the accidents are limited
in scope (e.g., some deck plate cracking).

Table 2-5. Additional events involving transportation/bandling of LNG.

Methane Progress, December 25, 1964

Fire at the forward vent riser ignited by lightning during unloading at the receiving terminal resulted in a
six-hour delay in unloading. Prompt crew reaction extinguished the flaring without damage. (Frondeville
1977)

Jules Verne, Voyage 2, 1965

During loading, LNG tank was overfilled, causing a liquid spill from vent riser. A foreign object jammed
in the float track prevented proper indication of liquid level by liquid level gauge. The tank cover and a
deck stringer plate fractured. (GAO 1978), (Frondeville 1977)

Methane Progress Voyage 14, May 1, 1965

At disconnection of loading arms, LNG spilied from ship’s crossover line. Seating of the liquid leading
valve was prevented by a piece of a failed Teflon valve facing that lodged between valve disc and seat.

The drip pan overflowed due to water being projected onto it. A minor deck plating crack occurred. (GAO
1978)
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Table 2-5. (continued).

Polar Alaska, November 19, 1969

During LNG loading at Kenai, Alaska, gas leaking was detected at the No. 1 cargo tank primary barrier on
the 71,500 m® Gas Transport membrane LNG carrier. Invar strakes creased in numerous locations. Cable
trays broke loose and caused damage. The vessel continued in service without using the No. 1 cargo tank
and the damage was repaired at a later date. (Harris 1993)

Methane Princess, Voyage 182, May 30, 1971

Liquid nitrogen loading line relief valve opened and spilled liquid nitrogen through the combined vent line
onto the foredeck. Some cracking in deck plating occurred. Relief valve had been improperly reset at
annual survey to a lower than specified pressure setting.® (Harris 1993)

Waterbury, Vermont June 25, 1971
A truck had a tire blowout, hit some rocks by the road, punctured a hole in the tank and spilled 20%.
There was no fire and the remainder of the load was dumped. (GAO 1978)

Warner, New Hampshire August 28, 1971
The driver of a truck drove off the road due to driver fatigue. The truck overtumed, cracking fittings on
the u'uck There was a small gas leak, but no fire. (GAO 1978)

North Whitehall, Wisconsin October 8, 1971
An LNG transport truck was in a head-on collision with another truck. There was a gasoline and tire fire,
but no loss of the LNG cargo. (GAO 1978)

Methane Progress, Voyage 193. October 31, 1971
A liquid nitrogen storage tank was inadvertently overfilled, causing discharge through the tank vent valve
and combined vent line onto the foredeck. Main and second deck plating were cracked. (Frondeville 1977)

Raynham, Massachusetts October 1973
An LNG truck sideswiped a parked car. The truck brakes locked and the trailer overturned. There was no

LNG cargo on board and no fire occurred. (GAO 1978)

Junction of Interstates 80 and 95, Fort Lee, New Jersey 1973
A driver could not negotiate a turn off. The resulting rollover demolished the tractor and caused $40,000
damage to the LNG trailer. No fire occurred. (GAO 1978)

Route 40, Hamilton Township, New Jersey February 18,1974
Faulty brakes on a truck caused a wheel fire. A check valve cracked and 5% of the LNG load leaked out

The report is unclear whether the LNG ignited or not. (GAO 1978)

McKee City, New Jersey February 21,1974
A loose valve on a truck leaked LNG during a transfer operation. (GAO 1973)

Massachusetts, July 16, 1974

A one-inch globe valve (nitrogen purge valve) was overpressured during cargo loading and spilled
approximately 40 gallons of LNG. The sudden pressure rise occurred when the cargo loading valve closed
because of a momentary electrical power interruption after generator switchover. The liquefied natural gas
cracked the canopy deck. (GAO 1978)
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Table 2-5. (continued).

Chattanooga, Tennessee January 1976
A transport truck carrying LNG overturned due to an oil spill on an exit ramp. There was no fire. The
truck was righted and continued delivery of its cargo. (GAO 1978)

Dalton, Georgia November 1975

The driver of a transport truck carrying LNG swerved to avoid a pedestrian, hit a guard rail and rolled over
and down an 80-foot embankment. There was $18,000 damage to the trailer, but apparently no fire.

(GAO 1978)

Pawtucket, Rhode Island September 16, 1976
A car hit an LNG trailer at the landing wheels, caused the trailer to overturn. There was no LNG loss or

fire. (GAO 1978)

Connecticut Turnpike March or April 1977
An LNG truck was parked at the side of the turnpike with a blowout when it was hit in the rear by a tow
truck. There was no leak or fire. (GAO 1978)

Arzew, Algeria March 30, 1977

An LNG spill of 1500 m® occurred at the Camel plant, attributed to the rupture of a aluminum-cast valve
body on a transfer line during the night. A plant operator was frozen to death, and the contingency plan
was put into action. The LNG cloud had dissipated at dawn without further casualty. (Frondeville 1977)

Waterbury, Connecticut July 1977
A “single wall” LNG trailer was hit in the rear by a tractor-trailer, knocking the axle off. In this case the
controls were under the tank. There was no loss of cargo. (GAO 1978)

El Paso Paul Kayser, June 29, 1979

After taking avoiding action to prevent a collision in fog at 22:30 hours the 125,000 m® Gaz Transport
membrane LNG carrier ran on to rocks and grounded in the Straits of Gibraitar when loaded with

95,500 m® of LNG. The bottom shell and double bottom were extensively damaged over almost the full
length of the cargo spaces. The invar membrane was indented but remained liquid-tight. There was no
cargo spillage. The vessel was refloated on July 4 and on July 11 the transfer of the cargo of LNG to sister
ship El Paso Sanatrach was completed. The damaged ship was then gas-freed, inerted and towed to Lisbon
for temporary repairs. Later the vessel proceeded under her own power to the ship’s original building yard
at Dunkerque for full repair work. (Harris 1993)

LNG Taurus, December 12, 1980

The 126,750 m* Moss spherical tank LNG carrier grounded in strong winds at Mutsure anchorage, near
the end of a loaded voyage from Bontang, Indonesia to Tobata, Japan. Approximately 40% of the double
bottom was breached and open to the sea. Severe weather conditions with gale force winds and 3 m waves
around the vessel hampered the salvage operations. Fuel from the bunkers was transferred to a barge and
the damaged ballast spaces were pressurized. The vessel was refloated on December 16 and then towed to
Tobata where the full cargo of LNG was discharged on December 18. (Harris 1993)
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Table 2-5. (continued).

Tenaga Satu, June 1983

Cargo pump defects caused damage to the No. 1 cargo tank on the 130,000 m® Gaz Transport membrane
LNG carrier. Approximately 110 m” of the invar primary barrier was renewed and patches fitted at
Yokohama, Japan in June 1984. (Harris 1993)

Ramdane Abane, February 9,1984

During the discharge of Algerian LNG at Montoir, France a cargo leak was noted through the No. 5 cargo
tank membrane on the 126,190 m® Gaz Transport membrane LNG carrier. The vessel was taken to the
roads for gas-freeing and inspection. Several suction manifolds were also found to be cracked. Repairs
were later carried out at St. Nazaire, France. (Harris 1993)

Isabella, June 14, 1985

A cargo valve failed on the 35,491 m® Gaz Transport membrane LNG carrier at the beginning of the LNG
discharge at Barcelona, Spain after a voyage from Skikda, Algeria. LNG from the No. 1 cargo tank
overflowed onto the main deck, causing severe cracking to the steelwork. The tank was discharged without
further incident. Extensive repairs were required resulting from the spill. (Harris 1993)

Tellier, February 15, 1989

Moorings broke on the 40,081 m® Technigaz membrane LNG carrier, due to 160 km/hr winds, during LNG
loading at Skikda, Algeria. Four terminal loading arms were damaged and LNG leaked to the main deck
causing extensive damage to the steelwork and upper primary and secondary barriers in the No. 3 cargo
tank. The vessel delivered LNG to Fos, France on February 16. Steelwork repairs were carried out at
Marseilles and the ship returned to service in June with one of the five cargo tanks out of commission.
Permanent repairs to the containment system were completed at Marseilles in October 1990. (Harris 1993)

a. This event does not involve LNG, but provides a representative failure scenario involving 2 cryogenic liquid.

Table 2-6. Nomenclature used in Figure 2-1.

Component ID Component Type Notes
FCV-103 Valve Pump inlet
FCV-104 Valve Pump vent
FCV-105 Valve Recirculation
FCV-106 Valve Saturation coil feed
FCV-107 Valve Dispensing

V-1 Valve : Top fill

V-2 Valve Hose drain

V-8 Valve Liquid phase

V-9 Valve Vapor phase
V-10 Valve LI-1 equalization
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Table 2-6. (continued).

Component ID Component Type Notes
V-11 Valve . Full trycock

V-12 Valve Manual vent

V-13 Valve Isolation pump inlet
V-14 Valve Isolation pump vent
V-15 Valve Saturation isolation
V-16 Valve Saturation pressure
V-17 Valve Manual vent pump sump
V-18 Valve Dispensing drain
V-19 Valve Vacuum gauge tube
V-20 Valve Safety selector
V-21 Valve Evacuation

V-22 Valve Stack drain

V-23 Valve Auxiliary top fill
V-24 Valve Transport return
V-25 Valve Transport suction
V-26 Valve N2 purge

V-27 Valve Sample isolation
V-28 Valve Sample vent

V-29 Valve Sample purge

V-30 Valve Top fill isolation
V-31 Valve Vehicle fill isolation
V-32 Valve PSV-101A test
V-33 Valve PSV-101B test
V-34 Valve PSV-105B test
V-35 Valve PSV-105A test
V-36 Valve PSV-104C test
V-37 Valve PSV-104B test
Cv-1 Check valve Fill

Cv-2 Check valve Saturation return
Cv33 Check valve Discharge
PSV-101A Safety valve Inner vessel
PSV-101B Safety valve Inner vessel
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Table 2-6. (continued).

Component ID Component Type Notes
PSV-10iC Safety valve Saturation pressure
PSV-102A Safety valve Pump sump
PSV-102B Safety valve Dispense line
PSV-103 Safety valve Transport suction line
PSV-104A Safety valve Top fill line
PSV-104B Safety valve Top fill line
PSV-104C Safety valve Saturation return line
PSV-104D Safety valve Saturation return line
PSV-105A Safety valve Pump vent line
PSV-105B Safety valve Pump feed line
PSE-101A Rupture disk Inner vessel
PSE-101B Rupture disk Inner vessel
PSE-101C Rupture disk Outer vessel
PSE-102 Rupture disk Pump sump

E-101 _ Saturation coil —

F-1 Filter Transfer line

TC-1 Vacuum probe —

PDI-101 Liquid level indicator —

PDT-101 Liquid level transmitter —_

M-1 Meter —

P-101 Pump —

PI-101A Pressure indicator Inner vessel
PI-101B Pressure indicator Saturation
PI-102A Pressure indicator Pump Sump
PI-102B Pressure indicator Dispenser
PT-101A Pressure transmitter Inner vessel
PT-101B Pressure transmitter Saturation
TT-102 Temperature sensor —_

TH-1 Transfer hose —

FC-1 Connection Top fill

FC-2 Connection Vehicle fill

FC-3 Connection Transport return
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Table 2-6. (continued).

Component ID Component Type Notes
FC-4 Connection Transport suction
C-1 Comnection Sample cylinder
C-2 Connection Sample vent

C-3 Connection Sample purge
C4 Connection Vehicle vent

C-5 Connection N2 purge

-0 Connection to vent stack —

—_ Vent to atmosphere —
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3. QUALITATIVE RISK ASSESSMENT

3.1. Introduction

This section documents the results of a qualitative risk assessment performed for a generic LNG
refueling station and summarizes the approach used to obtain these results. The objectives of this
assessment are to:

. Identify accident scenarios relevant to a broad spectrum of stations
o Determine which of these scenarios may be significant risk contributors.

Potential risk significance is determined through qualitative assessments of scenario relative
likelihood and consequences. The scenario consequences are expressed in terms of the following potential
outcomes: a2 large LNG release, onsite ignition of a large LNG release, and a large LNG offsite release.
The analysis does not directly address public and worker health consequence measures (e.g., severe injuries
and fatalities). However, these can be directly related to the three outcomes identified, especially when a
quantitative analysis is performed. The analysis also does not address offsite ignition, as this would require
treatment of offsite features (¢.g., traffic, industry, population) judged to be beyond the scope of this study.

It must be emphasized that the results of this qualitative risk assessment are relative. The potentially .
dominant scenarios identified are believed to be more risk significant than other scenarios studied. Thus,
the study results should be helpful to station designers and operators. However, a quantitative analysis is
needed to determine if the scenarios identified are risk significant in an absolute sense. Such an analysis is “
needed when supporting policy decisions.

3.2. Approach

Serious accidents can often be viewed as the culmination of a sequence of failures involving humans,
hardware, or both. Such a sequence consists of an initial fault, an "initiating event," followed by failures of
safety barriers (either engineered or natural) that would otherwise limit the severity of the accident. For
example, in the 1944 Cleveland tank accident, the initial storage tank failure was followed by the failure of
the bund wall to perform its intended function. The subsequent ignition of the gas and the failure of the
second storage tank can also be viewed as failures of safety barriers, even though an engineered mitigating
system was not involved.

Given this view of accidents, it can be seen that event trees, which graphically depict the different
possible sequences of safety barrier successes and failures following an initiating event, provide a natural
means to model accident scenarios. Event trees were introduced to risk assessment in the landmark Reactor
Safety Study (also known as WASH-1400) performed by the U.S. Nuclear Regulatory Commission
(USNRC 1975). Since that study, event trees have been used in many risk assessment applications. A
number of transportation risk assessment studies use event trees (Rhoads 1978), as does a recent
investigation of oil spill accidents (Siu et al. 1995).
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An example event tree for scenarios initiated by an operator tank filling error is shown in Figure 3-1.
The safety barriers challenged following the initiating event are listed at the top of the tree; these are called
"top events." Each node in the tree represents a safety barrier challenge; the path leading to the right of the
node represents success of the safety barrier, while the path leading down from the node represents failure.

Figure 3-1 shows that the event tree is an inductive diagram; it shows what happens after a given
initiating event. Clearly, therefore, the qualitative risk assessment must include multiple event trees, each
one corresponding to a different initiating event. Furthermore, efforts must be spent to ensure that the list
of initiating events considered is reasonably complete. If an initiating event is not addressed, the analysis
will not treat the risk contributions from scenarios associated with that initiating event. On the other hand,
analysis resources can be exhausted if too many initiating events are treated. Practical risk assessment
requires a balance between the desire for completeness and available resources.

With these issues in mind, the steps employed in this study to perform the qualitative risk assessment
are as follows:

1.  Develop list of initiating events
a.  Identify candidate initiating events
b.  Group initiating events
2. Develop event trees
a.  Identify event tree "top events”
b. Identify dependencies between top events and initiating events
c. Develop accident scenarios
3.  Analyze accident scenarios
a. Identify scenarios leading to severe consequences
b.  Identify potentially dominant scenarios
c. Determiné refueling station characteristics affecting likelihood of dominant scenarios.

3.3. Initiating Event Identification

3.3.1. Candidate Initiating Events
As in many studies and recommended in the Probabilistic Risk Assessment (PRA) Procedures Guide

(ANS 1980), this study employs a variety of methods to identify candidate initiating events, i.¢., initiating
events that might be treated in the analysis. The principal method used is the Master Logic Diagram
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(MLD). Other methods used include Failure Modes and Effects Analysis (FMEA), event sequence and
task analyses, operating experience review, and review of other relevant studies.

A MLD is a logic diagram which is used to deduce how a single top event can be caused by
underlying events (ANS 1980). MLDs are similar to fault trees in that they are deductive in nature. They
are different in that they do not generally show all of the conditions that must arise for the top event to
occur. (In other words, they do not generally include "AND" gates.)

Figures 3-2 through 3-4 show the MLDs developed for this study. The top events, shown in
Figures 3-2 and 3-3 respectively, are "Serious Onsite Injury and/or Fatality" and "Serious Offsite Injury
and/or Fatality." All of the branches in the diagrams represent "OR" gates. For example, Figure 3-2
shows that a serious onsite injury and/or fatality can involve an acute injury or fatality or a chronic injury.
An acute injury or fatality, in turn, can involve asphyxiation, trauma, thermal burns, or cryogenic burns.
The triangles in the diagram represent transfers to another tree (Figure 3-4); the diamonds represent events
that can be (but are not) further defined.

Both Figures 3-2 and 3-3 show that LNG releases are a major (if not sole) contributor to the top
event. They both transfer to Figure 3-4, which identifies several potential failures (hardware, human, and
external) that may lead to a release. It should be emphasized that while these failures may lead to an LNG
release, they do not necessarily guarantee the occurrence of the release. The additional failures that must
occur before a release can happen are identified in the event tree analysis, discussed in Section 3.4 below.
Note also that the failure events are defined generically. This allows the broad application of this study's
results to different refueling stations.

To supplement the MLD analysis, an FMEA® was performed on the system shown in Figure 2-1
(Facility Number 1). This FMEA is provided in Appendix A. It shows that there are a number of single
point failures (primarily involving relief valves) which can lead to releases of LNG to the environment.
Event sequence and task analyses (defining the sequence of actions taken during station and end user
vehicle refueling), reviews of past events, and reviews of other studies were also performed to supplement
the MLD.

Regarding other studies, Williamson and Edeskuty (1983) defined several hazards which involve or
influence the occurrence of initiating events:

o Storage tank failures

. Unloading and transfer leaks

° Corrosion of dissimilar metals in systems and foreign material induced corrosion
J Collisions of transport vehicles

] Vaporization system failure

. Fires and explosions

¢. A Failure Modes and Effects Analysis (FMEA) is an inductive exercise which postulates the failure of every system
component and determines the consequences of these failures.
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. Gas-aﬁ vapor cloud dispersion

. Temperature extremes

. Personnel exposure (cryogenic temperatures and flames)
. Human factors

o Reactivity of cryogens.

Melchers and Feutrill (1995), in their report on an ongoing risk assessment on LPG-fueled vehicles,
identify the following initiating event classes:

. Cold catastrophic failure of a tank (due to metal fatigue, corrosion, or overfilling)

. Flame impingement on a tank

. Impact by vehicles

. Negligent action by operators or drivers (driveaways, uncoupling hoses with valves open, etc.)
. Poor maintenance (unrepaired hose wear and tear, or valve spring corrosion, etc.)

. Vandalism and attempts at fuel theft.

Selected results of these other studies have been integrated into the LNG release MLD shown in
Figure 3-4 as appropriate.
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3.3.2. Initiating Event Grouping

In order to keep the analysis tractable, the candidate initiating events shown in Figure 3-4 were
grouped. [While two of the candidate events shown in Figure 3-2 (i.e., chronic injuries due to occupational
exposures to toxins and carcinogens) are not included in Figure 3-4, these events are believed to be of lesser
significance and are not further addressed in this study.] The groups were distinguished based on:

o Potential impact on the safety functions modeled in the event trees (see Figure 3-1 and
Section 3.4)

. Potential impact on the likelihood of recovery efforts
. Potential magnitude of releases.

For example, all internal failure causes for the storage tank (i.e., design, manufacturing, installation,
and maintenance errors; overpressurization; fatigue; embrittlement) are grouped together because the
particular failure cause is not expected to affect the likelihood of recovery, ignition, containment, and so
forth. Operator errors leading to release are grouped together because they imply the immediate presence
of an operator during the event; this should increase the chances for recovery. Events potentially involving
multiple tanks (e.g., driveaway accidents which could involve both the storage and vehicle tanks) are
distinguished from other events because they can lead to larger releases of LNG.

Table 3-1 lists the initiating events resulting from this grouping process and provides a map relating
these initiating events to the candidate initiating events (MLD failure causes) shown in Figure 3-4. Note
that some of the candidate initiating events appear under more than one initiating event. This is because
some of the failure causes (e.g., impact) can arise from different sources (¢.g., tornadoes, vehicle crashes).

Table 3-1. Initiating events and mapping to MLD failure causes.

Initiating Event
Identifier ___Description MLD Failure Causes Included
CAI Construction Storage tank failure, external causes: impact, other mechanical
Accident, Pipe/hose failure, external canses: impact, crushing, other mechanical
Isolable Seal failure
NOTE: "Other mechanical” includes digging and drilling
CAU Construction Storage tank failure, external causes: impact, other mechanical external causes
Accident, (e.g., digging, drilling)
Unisolable Pipe/hose failure, external canses: impact, other mechanical external causes
(e.g., digging, drilling)
Seal failure
NOTE: "Other mechanical” includes digging and drilling
EE External Event Storage tank failure, external causes: impact, heatup and overpressurization,
support failure

Truck fuel tank failure, external causes: heatup and overpressurization
Pipe/hose failure, external causes: impact, crushing, heatup and
overpressurization, support failure

Seal failure
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Table 3-1. (continued).

Initiating Event
Identifier Description MLD Failure Causes Included
NOTE: Includes effects of earthquakes, floods, storms, non-LNG fires, aircraft
impact, lightning strike, non-LNG' explosions, etc.
HF Hose Failure Pipe/hose failure, internal causes: DMIM error, overpressurization,
fatigue/wear, embrittlement
Operations error, filling error: hose misplaced
oD Driveaway Operations error, other error: driveaway
OF Filling Error Pipe/hose failure, external causes: crushing
Operations error, filling error: hose connection error, valve lineup error, tank
venting error, overfilling error
NOTE: Hose crushing due to vehicle driveover
oM Maintenance Operations error, maintenance error
‘ Error NOTE: Addresses maintenance-induced leaks
PFI Pipe Failure, Pipe/hose failure, internal causes: DMIM error, overpressurization,
" Isolable fatigue/wear, embrittlement
PFU Pipe Failure, Pipe/hose failure, internal canses: DMIM error, overpressurization,
Unisolable fatigue/wear, embrittlement
SFI Seal Failure, Seal failure: DMIM error, overpressurization, fatigue/wear, embrittlement
Isolable ‘
SFU Seal Failure, Seal failure;: DMIM error, overpressurization, fatigue/wear, embrittlement
Unisolable
STF Storage Tank Storage tank failure, external causes: support failure
' Failure Storage tank failure, internal causes: DMIM error, overpressurization, fatigue,
embrittlement
TTF Truck Fuel Truck tank failure, internal causes: DMIM error, overpressurization, fatigue,
Tank Failure embrittlement
Active component failure: truck relief valve fails to close
TIT Tanker Truck Truck tank failure, internal causes: DMIM error, overpressurization, fatigue,
Tank Failure embrittlement
Active component failure: truck relief valve fails to close
VA Vehicular Storage tank failure, external causes: impact
Accident Truck tank failure, external causes: impact
Pipe/hose failure, external causes: impact
VFI Valve Failure, Active component failure: relief valve fails open, vent valve fails open,
Isolable isolation valve fails to close
VFU Valve Failure, Active component failure: relief valve fails open, vent valve fails open,
Unisolable isolation valve fails to close

Appendix B presents fault trees for each of the initiating events as applied to a generic refueling
station. Unlike an MLD, the fault trees identify all necessary and sufficient conditions for the occurrence
of the top event.
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3.4. Event Trees

3.4.1. Safety Barrier Definitions

An event tree, as discussed earlier, is a graphical representation of the possible scenarios that may
follow an initiating event. The different scenarios are defined by successes and failures of safety barriers
(called "top events" because of their placement in the event tree), both natural and engineered, that can
prevent the initiating event from progressing to a major accident.

The top events considered in this study are adapted from those identified in a study on il spill events
(Siu et al. 1995). They are defined in terms of functions rather than engineered systems, in order to allow .
their application to a wide variety of facilities. They are also defined qualitatively, in keeping with the
qualitative nature of this study. The top events are:

° Early Detection (ED): Detection of the release within a few minutes of its occurrence

. Early Recovery (ER): Early (within a few minutes) termination of the release before most of
the source inventory is lost

. Secondary Impact Prevention (SI): Prevention of ignition or other additional effects (e.g.,
- large releases from additional sources)

. Late Recovery (LR): Late (several minutes or more) termination of the release before most of
the source inventory is lost

. Release Containment (RC): Containment of the release in the vicinity of the release.
3.4.2. Dependencies

In order to develop the possible sequences following an initiating event, dependencies between the
initiating event and the top events, as well as those between the different top events, must be identified.

Consider the event tree shown in Figure 3-5, which models the possible sequences following a
release caused by a severe external event (EE).° It can be seen that the EE event tree has a number of
branches labeled "GF," this denotes a "guaranteed failure." This reflects the modeling assumption that an
external event severe enough to directly cause a large LNG release is also severe enough to greatly inhibit
recovery efforts. Other assumed effects of the different initiating events on the top events are documented

in the initiating event-to-safety barrier dependency matrix shown in Table 3-2.

d. The "external events" (i.e., events involving faults external to the system) treated by this tree include natural phenomena
(e.g., earthquakes, floods, windstorms, lightning) and non-LNG fires. A number of other external events (e.g., construction
accidents) are treated using different event trees.



Figure 3-5 also shows that given failure of early detection (ED), early recovery (ER) is guaranteed to
fail so the success branch is dashed to denote that it is not considered further. This is an example of a top
event-to-top event dependency. The full dependency matrix for top event interactions is shown in Table 3-
3. '

Both Tables 3-2 and 3-3 represent generic dependency relationships. It is possible that additional
dependency relationships exist for particular facilities. For example, in situations where subsequent
failures can lead to releases from additional tanks (top event SI), the combined inventories may be large
enough to overwhelm existing berms, depending on the sizing of the berms. The characteristics of the three
facilities visited with respect to the event tree top events are discussed in Section 3.5.

3.4.3. Scenario Identification
Using the relationships shown in Tables 3-2 and 3-3, event trees have been developed for each of the

initiating events identified in Table 3-1. The full set of event trees is shown in Appendix C. Figures 3-1
and 3-5 show representative event trees for tank filling errors (OF) and external events (EE), respectively.
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Table 3-2. Initiating event-to-top event dependency matrix.

Top Events

IE® ED ER SI LR RC
CAl GS GF Q) —_ —
CAU GS GF ¢)) GF —
EE ) GF 3) GF ()]
HF &) 6) — — _
OD GS — — — ¢)
OF ) (6) _ —_ —
oM )] — &) — —
PFI — — — — ‘ —
PFU — GF — GF _
SFI — —_ — —_— —_
SFU — GF — GF —
STF — GF — GF —_
TTF — GF —_ GF (10)
TIT — -GF — GF —
VA GS GF 1) GF —
VFI —_ —_ — —_— —
VFU —_ GF —_ GF —_

a. Descriptions of the Initiating Events are in Table 3-1.

ED
ER

SI

LR

RC

Early Detection: Detection of the release within a few minutes of its occurrence

Early Recovery: Early (within a few minutes) termination of the release before most of the source inventory is
lost

Secondary Impact Prevention: Prevention of ignition or other additional effects (e.g., large releases from
additional sources)

Late Recovery: Late (several minutes or more) termination of the release before most of the source inventory
is lost

Release Containment: Containment of the release in the vicinity of the release

GS = Guaranteed Success
GF = Guaranteed Failure

Other Notes:

1. Presence of construction activities increases likelihood of ignition sources.

2. Many external events can reduce the likelihood of early detection (¢.g., due to loss of power, distraction).

3. Ignition sources are more likely for some external events (e.g., thunderstorms).

4 External events can decrease or increase likelihood of containment success. Examples: earthquake fails dike;

A S

11.

storm disperses LNG vapor.

Presence of personnel increases likelihood of early detection.

Presence of personnel increases likelihood of early recovery.

Truck release may be close to site boundary.

Time to detection depends on size and location (e.g., in yard or in confined space) of leak.

Presence of maintenance activities increases likelihood of ignition sources.

Containment success likely, given size of fuel tank. (Only containment problem arises if the release occurs near/at
site boundary.)

Accident environment increases likelihood of ignition sources.
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Table 3-3. Top event-to-top event dependency matrix.

Top Events
IE* ED ER SI LR RC
ED — ¢)) — — —
ER — — V)] ) ¢
SI —_ — — —_— —
LR — - — — 3
RC —_ —_ — —_— —

a. Descriptions of the Initiating Events are in Table 3-1.
ED Early Detection: Detection of the release within a few minutes of its occurrence
ER Early Recovery: Early (within a few minutes) termination of the release before most of the source inventory is

lost
SI Secondary Impact Prevention: Prevention of ignition or other additional effects (e.g., large releases from
additional sources)
" LR Late Recovery: Late (several minutes or more) termination of the release before most of the source inventory
is lost

RC Release Containment: Containment of the release in the vicinity of the release
GS = Guaranteed Success
GF = Guaranteed Failure

Other Notes:

1. Failure of ED guarantees failure of ER.

2 Success of ER makes top event irrelevant

3. Success of LR makes top event irrelevant.

4 Top events appear in rough chronological order; only dependencies of later events on earlier events are modeled.

The accident scenarios for each initiating event follow directly from the event trees. For example,
Scenario 3 of the EE event tree (Figure 3-5) involves the occurrence of the external event (EE), successful
early detection (/ED), guaranteed failure of early recovery (ER'), successful prevention of secondary
impacts (/SI), guaranteed failure of late recovery (LR'), and successful containment of the release (/RC).
The Boolean representation of this sequence of events is:

Scenario 3 = EE*/ED*ER"*/SI*LR"*/RC

where the asterisk (*¥) denotes the logical AND operator, the slash (/) denotes success, no slash denotes
failure, and the prime (') denotes a guaranteed event.
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3.5. Scenario Analysis

3.5.1. Scenarios with Severe Consequences

The event trees in Figures 3-1 and 3-5 show the assumed consequences of each accident scenario. A
"large release” is one that poses a significant hazard to onsite and offsite personnel. Depending on the site
characteristics, this is generally on the order of several hundreds of gallons.® The other consequences are
~ self-explanatory.

Appendix D provides lists of all of the scenarios leading to large releases, large releases ignited
onsite, and large releases which go offsite. These lists have been constructed simply by collecting all of the
relevant sequences from each event tree.

3.5.2. Potentially Dominant Scenarios

The numerous scenarios listed in Appendix D are not all equal contributors to risk. Two scenarios
leading to the same undesired consequences (e.g., onsite ignition of a large release) will have different
contributions if their likelihood’s differ.

Tables 3-4 and 3-5 show the lists of high consequence scenarios believed to be the most risk
significant in terms of onsite ignition (of a large release) and large offsite release, respectively. This list has
been developed by employing pairwise qualitative comparisons of scenarios within each event tree. The
comparisons generally take advantage of the observation that, generally speaking, failures (human or
hardware) are far less likely than successes.! Thus, the risk contribution from one scenario is usually
assumed to dominate that from another if: a) both scenarios lead to the same consequences, and b) the first
scenario involves fewer failure events than the second. For example, in comparing the first construction
accident scenario (CAI) with the second (CAU), both lead to onsite ignition of a large release of LNG.
However, the latter scenario (CAU) involves the failure of spill containment. From the standpoint of large
release occurrences, therefore, the first scenario shonld dominate the latter.

Exceptions to this dominance assumption are as follows:

. For the external events (EE) scenarios, it is assumed that failure of early detection (ED) is
more likely than success, due to the impact of the external event on facility hardware and
operators.

For the maintenance (OM) and isolable pipe (PFI), seal (SFI), and valve (VFI)
failure scenarios, it cannot be determined if scenarios invoiving the success of
early detection (/ED) and the failure of early recovery given an initiator (ER|IE)
are significantly more likely than scenarios involving the failure of early detection
(ED) and the consequent guaranteed failure of early recovery given an initiator
(ER'IE). In other words, it is not clear if

e. Truck fuel tank releases, while generally involving smaller quantities, are modeled as being capable of leading to "large
releases” because they can occur close to the site boundary.

f. This rule does not cover sitnations where failure is guaranteed because of previous occurrences during the scenario.
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Probability {/ED*ER|IE} >> Probability{ED*ER'[IE}

where Probability{A[B} denotes the conditional probability of event A given event B and "IE"
refers to the initiating event.

Tables 3-4 and 3-5 also provide a preliminary comparison of scenarios for different initiating events.
Shaded scenarios in the table are believed to be generally less likely than unshaded scenarios; the bases for
the scenario classifications are provided in the notes column of the table. Note that the storage tank
scenarios (which involve internal failure causes—see Table 3-1) are not shaded. Although catastrophic
failures are believed to be very unlikely given current design and construction practices, the potential
consequences are believed to be large enough to warrant their inclusion in the group of more important
scenarios.

3.5.3. Station Characteristics Affecting Dominant Scenarios

Table 3-6 identifies a number of site-specific characteristics for each of the facilities visited relevant
to the likelihood of the initiating events considered in this study. Table 3-7 lists those characteristics
relevant to the success or failure of the event tree top events (i.e., the safety barriers). Comparing these
characteristics with the potentially dominant scenarios listed in Tables 3-4 and 3-3, it can be seen that
differences in design, operations, and siting might imply significant differences in risk.

For example, regarding station design, Facility Number 3 has an onsite vehicle maintenance shop
whereas the vehicle maintenance shops for Facilities 1 and 2 are a few minutes away. When looking
specifically at refueling station risk, therefore, Facility Number 3 is likely to have a higher risk contribution
from maintenance activities than the other two facilities. This potentially higher contribution could come
from a higher frequency of maintenance-induced releases (initiating event OM) as well as an increased
number of potential ignition sources (which affects the likelihood of top event SI). As another example,
Facility Number 2 does not have a bund fully surrounding the main LNG storage tank (a trailer tank);
while the tank is in a slight pit, it is not clear that, in the event of a full spill, the LNG will be fully
contained. This reduces the likelihood of success of top event RC.

Differences in operation also are expected to have impacts on the station risk. Some potentially
important factors include the frequency of refueling activities (Facilities 3 and 5 are by far the busiest), the
degree of public access to the refueling area (Facility Number 2 is open to the public ~ the site has a
gasoline service station and convenience store). The remaining facilities have varying degrees of restricted
access, the training of personnel in fueling vehicles (Facilities 3, 4, 5, 6, and 7 use specially trained
refueling technicians; refueling at Facilities 2, 8 and 9 is performed by the truck drivers, some of whom
excessively vent their fuel tanks to speed up the process), the location of designated emergency response
personnel (depending on the time of day, key staff for Facility Number 2 can be 20 to 30 minutes away
from the station when an alarm sounds), and the trained response of all personnel to emergencies (Facility
Number 2 allows drivers one override of the emergency shutdown system). These factors affect the
frequency of operator errors (initiating events OD and OF) and the likelihood of recovery and accident
mitigation (top events ER, LR, and SI).
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Finally, differences in siting may also have a significant impact on station risk. These differences can
affect the likelihood of release due to external events (e.g., earthquakes, fires, explosions, floods,
windstorms, lightning strikes, aircraft impacts), the likelihood of ignition given a release, and the public
health and safety consequences of an accident. For example, the urban location of Facility Number 3
increases the availability of debris that may be driven by a severe storm. It also increases the availability
of potential ignition sources and increases the number of people potentially exposed to the consequences of
a major accident.

It should be cautioned that, as noted at the beginning of this section, these insights are relative.
Additional, quantitative analysis is needed to determine if the factors identified above have a s1gmﬁcant

impact on absolute risk.
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4. PHENOMENOLOGY OF LIQUEFIED NATURAL GAS

- 4.1. Introduction

This section discusses the properties and behavior of LNG under nominal and accident conditions.
(A qualitative comparison of LNG, gasoline, and diesel properties is provided in Table 4-1.) The section
also addresses safety issues recently raised by Hunt (1996).

The handling of liquefied natural gas in a refucling station has several aspects common to present .
day fuels such as gasoline or diesel. With LNG, as well as with gasoline and diesel, all fuel transfers from
the storage tank to the vehicle tank are carried out in liquid form. There is some vapor present during the
transfer of gasoline and diesel, but the amount is very small and usually ignored. During the transfer of
LNG from the storage tank to the vehicle tank, however, there is a need to collapse pressurized vapors in
the ullage of the vehicle tank through the addition of colder liquid methane. If the vapors cannot be
collapsed, then they must be safely vented. Also, vapors formed during the cooling of the transfer hose and
nozzle must be recondensed or safely vented. Thus an LNG station is characterized by closed piping
systems and dedicated vent stack to a greater extent than is the case for gasoline and diesel where the
underground tanks have elevated vent stacks.

The principal hazard addressed in this report is the accidental combustion of the fuel. All fuels
require vaporization as part of the combustion process. All fuels require that the mixtures of air and fuel
vapor be within certain flammability limits in order that combustion can be sustained. - All liquid fuels will
disperse on the ground or water surface if spilled and all liquid fuels require an input of heat for
vaporization.

Liquefied natural gas differs in several important ways from the more common liquid fuels, however.
Because it is a liquid at 112°K at atmospheric pressure, the LNG must be insulated from external sources
of heat. If spilled, the liquefied natural gas draws heat from the ground or water, from the air, and from
solar insolation. The rate of vaporization is dependent on the heat available from the surroundings and on
heat transfer rate from those surroundings. .

4.2. Properties of Liquefied Natural Gas

4.2.1. Physical Properties

The properties of methane are compared to hydrogen and gasoline in Table 4-2. Note that natural
gas in the vapor form at nominal temperature and pressure (NTP) is about 6 times lighter than gasoline
vapors. Thus the vapors resulting from a spill of LNG will rise after being warmed by the surrounding
environment, while gasoline vapors will flow along the ground or water surface until dispersed by
diffusion.

An important ramification of the cryogenic nature of LNG is that a trapped volume, e.g. between
two valves in a pipe, the pressure increases as the fluid warms by heating from the surroundings. Good
insulation can slow the warming process, but eventually, the entire contents of the system will become high
pressure vapor if refrigeration is not restored. Thus, it is imperative that all potentially isolated sections of
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piping and tankage be vented through a relief valve. The inclusion of a relief valve for any encloséd
volume is a standard practice of cryogenic design.

Table 4-1. Comparison of LNG, diesel, and gasoline.

Fuel
Characteristic LNG Diesel - Gasoline
Storage 112°K 300°K 300°K
temperature :
(at 1 atm.) -260°F 60°F 60°F
Operating 150 psig 50 psig 50 psig
pressure
Storage 100 psig Hydrostatic pressure only, Hydrostatic pressure
pressure 0.3 psig per foot only, 0.3 psig per foot
Storage Above ground tanks Underground tanks Underground tanks
location
Vapor 1 atmosphere Small 0.3 psi
pressure at
RT
Vapor Rises Settles Settles
buoyancy
Flammable 5-15% at 60°F — 1.2-8 % at 60°F
limits
Flash point of NA 100°F -50°F
liquids
Fluid behavior Cryogenic—small spills Like water - familiar Like water—familiar
evaporate quickly.
Large spills flow.
Fuel nozzles Closed connection Open to air connection Open to air connection
Routine Boiloff and venting Very little venting Little venting
releases from (minimized through
tanks design)
Fate of Disperses in Liquid sinks into ground Liquid sinks into ground
routine atmosphere, oxidizes, water, vapors contribute water, vapors contribute
releases greenhouse gas to smog to smog
Chemical Low reactivity Solvent Solvent
reactivity
Solubility Grease and oils have Solvent Solvent
low solubility at liquid
CH,, temperatures

57




Table 4-1. (continued).

Fuel

Characteristic LNG Diesel Gasoline

Autoignition 1110°F 500-700°F 440-880°F

temperature

Spark ignition 03 mJ 03mJ 03 mJ

energy

Tanks Double walled, steel, Single wall, uninsulated Single wall, uninsulated
vacuum insulated

Handi Not famili Famili Famili

Movement Pressure differentials or Pumps Pumps
pumps

Odor Odotless unless odorant Distinct odor Distinct odor
chemical is added

Toxicity No Threshold Limit TLV =400 ppm TLV = 500 ppm
Vahue (TLV)

Inhalation Simple asphyxiant, Irritant Irritant

hazard displaces oxygen®

Fuel losses Storage tanks are well Small losses from Small losses from
sealed. At some evaporation or spills. evaporation or spills.
stations a significant Leaking underground Leaking underground
fraction (up to 25%) storage tanks are a storage tanks are a
can be lost in handling pervasive problem. pervasive problem.
through venting warm
tanks °

Effects of fuel Greenhouse gas, Losses limited by EPA Losses limited by EPA

losses transient fog rules on odor and rules on odor and

groundwater pollution groundwater pollution

Noise Unfamiliar noises; gas Familiar Familiar
venting, COmMpIessors
for CNG.

Touch Cryogenic burns, Skin irritation, rashes Skin irritation, rashes
hypothermia for long
exposure

Visual Above ground tanks, Underground tanks Underground tanks

differences venting gases

a. Cold methane (under 175 K) is denser than air and therefore displaces air and acts as an asphyxiant in lower-lying enclosed
spaces. Furthermore, the volumetric expansion of the methane as it boils can displace air in enclosed spaces.

b. Methane is 25 tiﬁa&s more effective as a greenhouse gas than carbon dioxide, but produces less CO» in combustion than other
fossil fuels. Therefore, refueling losses will have to be limited to about 5% in order for LNG to have a net benefit in terms of

the greenhouse gasses.
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Table 4-2. Properties of hydrogen, methane and gasoline.

Property Hydrogen Methane Gasoline Units
Molecular Weight 2.016 16.043 107 amu
Triple point pressure 0.0695 0.1159 — atm
Triple point temperature 13.803 90.68 18010220 K
Normal boiling point (NBP) temperature 20.268 11.632 31010478 K
Critical pressure 12.759 45.387 2451027 atm
Critical temperature 32.976 190.56 5400569 K
Density at critical point 0.0314 0.1604 0.23 g/em’
Density of liquid at triple point 0.077 0.4516 — g/em®
Density of solid at triple point 0.0686 0.4872 — g/em®
Density of vapor at triple point 125.597 251.53 — gfem®
Density of liquid at NBP 0.0708 0.4226 0.7 g/em®
Density of vapor at NBP 0.0013 0.00182 0.0045 gfem®
Density of gas at NTP 83.764 651.19 4400 g/m®
Density ratio: NBP liquid to NTP gas 845 649 156
Heat of fusion 58.23 58.47 161 Jig
Heat of vaporization 445.59 509.88 309 Jig
Heat of sublimation 507.39 602.44 -_ g
Heat of combustion (low) 119.93 50.02 445 kl/g
Heat of combustion (high) 141.86 55.53 48 kl/g
Energy density 8.49 21.14 31.15 Ml /litre
Specific heat (Cp) of NTP gas 14.89 222 1.62 J/gK
Specific heat (Cp) of NBP liquid 9.69 35 22 J/g-K
Specific heat ratio (Cp/Cv) of NTP gas 1.383 1.308 1.05 —
Specific heat ratio (Cp/Cv) of NBP liquid 1.688 1.676 — —
Viscosity of NTP gas 0.0000 0.00011 0.00005 g/em-s
Viscosity of NBP liquid 0.0001 0.00113 0.002 g/cm-s
Thermal conductivity of NTP gas 1.897 0.33 0.112 mW/cm-K
Thermal conductivity of NBP liquid 1 1.86 131 mW/cm-K
Surface Tension 0.0019 0.01294 0.0122 N/m.
Dielectric constant of NTP gas 1.0002 1.00079 1.0035 —
Dielectric constant of NBP liquid 1.233 1.6227 1.93 —
Index of refraction of NTP gas 1.0001 1.0004 1.0017 —
Index of refraction of NBP liquid 1.11 1.2739 1.39 —
Adiabatic sound velocity in NTP gas 1294 448 154 m/s
Adiabatic sound velocity in NBP liquid 1093 1331 1155 m/s
Compressibility factor (Z) of NTP gas 1.0006 1.0243 1.0069 —_
Compressibility factor (Z) in NBP liquid 0.0171 0.004145 0.00643 —
Gas constant (R) 40.7037 5.11477 0.77 cm’-atm/g-K
Isothermal bulk modulus of NBP liquid 50.13 456.16 763 MN/m2
Volume expansivity (b) of NBP liquid 0.0165 0.00346 0.0012 K

NBP = Normal boiling point
NTP =1 atm and 20 C (293.15°K)
Source: (Hord 1978)




Another important physical property of methane is its lack of odor. Although ethyl mercaptan is
added at 25 ppm to give the odor we associate with natural gas, it cannot be used in LNG. At LNG
temperatures, the mercaptan compounds freeze and are not carried along with the gas. There have been
attempts to develop cryogenic odorants that will remain in solution in LNG, such as tetrahydrothiophene
(THTP) (Mulliner 1974). The lack of odor greatly increases the importance of methane detectors to detect
leaks and spills.

4.2.2. Combustion Properties

Four conditions are necessary for a self-sustaining combustion reaction. First, the fuel and oxygen
must be intimately mixed in vapor form. Second, the proportions of fuel and oxygen must be within the
flammability limits. Since we are here concerned with accidental combustion in air, we will discuss
flammability limits as volume percent of fuel in air. Third, within the region where the fuel and air are
within the flammability limits, there must be an energy source capable of initiating the chain of chemical
reactions that constitutes the combustion process. The combustion process will not be self-sustaining if
strong heat sinks are present within the reacting mixture of gases. These heat sinks may be in the form of
water droplets, solid particles or the metal walls of a tank or pipe. The final condition necessary for a self-
sustaining combustion reaction is that the chain reaction be complete and that intermediate products not be
removed so as to interrupt the chain.

The combustion properties of hydrogen, methane and gasoline are compared in Table 4-3.

Flammability Limits. Methane and air are combustible when the methane volume fraction is
between about 5 and 15 percent. The flammability limits are somewhat dependent on the initial
temperature of the mixture, as shown in Table 4-4. When the vapor is very cold, the flammability limits
are more narrow than at room temperature. Note also in the table that the density of methane at 175°K is
about the same as air at 300°K. Thus methane rises and disperses at temperatures above 175°K.

Distinction Between Deflagration and Detonation. A deflagration is a subsonic ,
combustion wave sustained by chemical reactions in a reactive mixture of gases. The diffusion of heat and
species from the reaction zone into the unburned gases is responsible for the initiation of chemical reactions
ahead of a deflagration. Thus the speed of propagation of a deflagration is limited by the molecular
diffusivities within the gas to about one meter per second. A deflagration can be ignited by a weak energy
source with an energy of only a fraction of a millijoule. Deflagration combustion pressures are generally
much less than 1 psi.

The initiation of chemical reactions in a detonation, on the other hand, is due to an adiabatic shock
compression wave passing through the unburned gases. The combustion reactions take place in highly
compressed and preheated gases and the wave propagates very rapidly. Typical propagation velocities are
of the order of kilometers per second and the pressures produced are generally several psi. The
instantaneous ignition of a detonation in an unconfined mixture of reactive gases requires several orders of
magnitude more energy than that necessary to ignite a deflagration. The energy necessary to initiate a
detonation can be reduced if the mixture is confined by hard, reflecting walls, such that the shock can pass
through the mixture several times.

Deflagration Conditions. As noted in Table 4-2, the energy necessary to ignite a deflagration is
only about 0.3 mJ for either methane or gasoline. Such energy is easily available from a match, an open
flame, or a spark. As noted above, the flammability limits for methane are somewhat higher for methane (5
to 15 volume percent in air) than for gasoline (1.2 to 8 volume percent in air.)
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Table 4-3. Combustion properties of hydrogen, methane and gasoline.

Property Hydrogen Methane Gasoline Units
Limits of flammability in air 4.0 t0 75.0 53t015.0 10t07.6 vol %
Limits of detonability in air 18.3t0 59 6310135 1.1t03.3 vol %
Stoichiometric composition 29.53 9.48 1.76 vol %
in air
Minimum energy for 0.02 0.29 0.24 mJ
ignition in air
Autoignition temperature 858 813 501 to 744 K
Hot air-jet ignition 943 1493 1313 K
temperature
Flame temperature in air 2318 2148 2470 K
Percentage of thermal 1710 25 231033 30to0 42 %
energy radiated from flame
to surroundings
Burning velocity in NTP air 265 to 325 37t045 37t043 cm/s
Detonation velocity in NTP 148t02.15 13910164 14t017 km/s
air
Diffusion coefficient in NTP  0.61 0.16 0.05 cm?/s
air
Diffusion velocity in NTP <2.00 <0.51 <0.17 cm/s
air
Buoyant velocity in NTP air  1.2t0 9.0 0.8106.0 Nonbuoyant  m/s
Maximum experimental safe ~ 0.008 0.12 0.07 cm
gap in NTP air '
Quenching gap in NTP air 0.064 0.203 0.2 cm
Detonation induction L/D=100
distance in NTP air
Limiting oxygen index 5 12.1 11.6 vol %
Vaporization rates (steady 251t5.0 0.05t0 0.5 0.005 to0 cm/min
state) of liquid pools without 0.02
burning
Burning rates of spilled 3.0t06.6 03t01.2 021009 cm/min
liquid pools
Flash point Gaseous Gaseous 230 K
Toxicity Nontoxic Nontoxic Slight Slight (asphyxiant
(asphyxiant)  (asphyxiant)  (asphyxiant)
Energy of explosion, 24 11 10 g TNT/g fuel
Energy of explosion 1.71 4.56 7.04 g TNT/cm® NBP liquid
fuel
Energy of explosion 2.02 7.03 4422 kg TNT/m® NTP
gaseous fuel

NTP =1 atm and 20 C (293.15°K)

Source: Hord 1978
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Table 4-4. Temperature dependence of flammability limits for methane-air mixtures.

Lower Upper
Temperature Flammability Flammability
Limit Limit p CH, p air
K c F (%) (%) ke/m3 kg/m3
111.6 -161 -258.5 5.7 13.0 1.8159 —
150 -123 -189.4 55 134 1.3229 -
175 -98 -144.4 54 13.7 1.1279 —
200 73 -99.4 54 13.9 0.9843 1.7690
225 48 544 53 14.2 0.8726 —
250 23 9.4 52 145 0.7843 —
300 27 80.6 5.0 15.0 0.6527 1.1769
350 77 170.6 43 15.6 0.5593 —
400 . 127 260.6 4.6 16.1 0.4890 0.8826

Detonation Conditions. D. C. Bull and coworkers (Bull 1976; Baker 1991) performed a series
of experiments to determine the energy needed to initiate a detonation in mixtures of methane and oxygen
diluted by nitrogen. In his experiments, the gaseous mixtures were confined by thin plastic membranes,
thus simulating an unconfined cloud of methane and air. The mixture consisted of CH, +2 0, +x N, .

He found that a detonation could be initiated by 1 gm of the high explosive Tetryl at x = 2, but that
1000 gm of Tetryl was required at x = 6. Extrapolating to a mixture of methane and air (x = 7.4) he found
that 22 kg of Tetryl would be necessary to initiate a detonation. That quantity of Tetryl releases about
300 MJ, some twelve orders of magnitude higher than the spark ignition energy. Tests with other gases
showed that ethane/air would detonate with about 50 grams of Tetryl, propane/air with 90 grams and
butane/air with about 100 grams. '

The lower energy requirement for ethane is important when considering the use of ‘weathered” LNG,
which may contain several percent ethane due to the selective vaporization of methane from the liquid.
Weathering is discussed in a later section.

4.2.3. Chemical Hazards

In additional to the hazards of accidental combustion of LNG, its ability to displace breathing air
and to cause cryogenic burns must be considered.

Toxicity Limits. Natural gas, per se, is non-toxic. However, it can be an asphyxiant if air is
displaced and the oxygen content of the breathing atmosphere falls below 15% (ACGIH 1996). Since
methane at temperatures below 165°K is denser than air at room temperature, cold methane gas will pool in
low sections of a facility, such as the bund enclosure, pumping pits, basements, and pits in vehicle
maintenance facilities. Maintenance facilities specifically designed for LNG vehicles do not have pits
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(Thomas 1996). Note that the danger of asphyxiation is increased in LNG facilities due to the absence of
an odorant in the gas, as discussed earlier.

Considering LNG leaks and the volume expansion that occurs upon boiling, the issue of displacing
air is a toxicity concern. Workers are restricted by law from entering atmospheres with less than 19.5%
volume of oxygen (normally 21% at sea level) without precautions (OSHA 1996) such as breathing
apparatus. This 19.5% value is for workers of average health; it may be taxing to children and elder
people. No guidelines for acceptable levels of oxygen deficiency for the general public were found in the
literature. The expectation is that any deficiency should be less than that allowed for healthy workers (i.c.,
only oxygen concentrations greater than 19.5%). The Compressed Gas Association (CGA 1992) gives
some symptoms of oxygen deficiency. At values of 12-15%, judgment and coordination are impaired, so it
is questionable if a person can evade the hazard without assistance. At oxygen concentrations at the 4 to
6% level, a person can enter a coma in less than a minute, followed by convulsions and death.

Carcinogenicity. Methane, or natural gas, is not a carcinogen; it has no threshold limit value. It
is a simple asphyxiant gas as md1cated above.

4.2.4. Cryogenic Hazards

As a cryogenic liquid, LNG can cause burns to workers if it comes in contact with the skin. The
hazard is further complicated since LNG is about 42% the density of water and handled at pressures of
15 to 250 psi. Therefore the possibility of cold liquid spraying into a worker’s face or onto a worker’s
clothing must be guarded against. Personal protective equipment (PPE), such as impervious gloves that
extend to the elbow, full face shields with chin protection, and an impervious apron, is necessary.
According to the fueler in one location we visited, if LNG hits an exposed portion of ordinary clothing, the
worker should immediately hold that area of clothing away from the skin to prevent cryogenic burns. This
action is also given in LNG safety manuals. It is also important that ‘cut-offs’ and trousers with cuffs not
be allowed in the refueling area. Cut-offs expose the legs to immediate cryogenic burns. Trousers with
cuffs can hold a pool of cryogenic liquid next to the ankles. Note that at other locations visited, workers
refueling with LNG did not wear their protective equipment when refueling. In some instances the
protective equipment consisted only of short (wrist-length) work gloves and safety glasses.

A second cryogenic health hazard is associated with LNG vapors; breathing cold vapors from LNG
evaporation or boiling can damage the lungs (GRI 1994). While methane does not chemically react with
the lungs (i.e., it is a 'simple’ asphyxiant that creates a hazard by displacing air), the cold vapor from LNG
can cause "frosting the lungs." This effect is also a health concern in extremely cold winter weather.
Breathing super cold air or methane vapor can frost or freeze lung tissues. When the tissues freeze, ice
forms. Since ice occupies more volume than a similar quantity of water and since ice crystals are also
sharp, the cells can be ruptured and will likely die upon thawing. If alveoli cells are destroyex, a person
could experience edema, pneumonia-like symptoms, and emphysema-like symptoms. The type of
symptoms and their severity are directly related to the severity of exposure.

Regarding potential component damage caused by exposure to LNG, all components normally in
contact with LNG are metals that do not undergo a ductile to brittle transition (DBT), e.g., austenitic
stainless steel, aluminum, brass, copper. However, the ordinary structural steel commonly used for
buildings, ships, etc. does undergo a DBT at 200-300°K. Our research has found reports of cracking of
carbon steel deck plates on LNG carrier ships as a result of spills on the deck. The spill did not necessarily
pool on the deck, but enough heat was removed from the deck plates to cause cracking. The cracking was
due to a combination of contraction and embrittiement (Harris 1993). In these incidents, the damage was

63




apparently localized and was generally repaired at the next scheduled maintenance. However, the DBT
phenomenon presents an opportunity for a minor spill to become a major spill if a structural steel
component, such as a tank support column, fails due to embrittlement.

4.3. Phenomena in Routine Handling

Because LNG is a cryogenic fluid, its routine handling is different from the handling of gasoline and
diesel fuel. This section discusses how the composition of LNG can change over time due to the selective
vaporization of methane ("weathering"), how differences in density between new LNG and that already in
the storage tank can cause a sudden pressure rise in the ullage volume ("rollover"), and how vapor can be
evolved in a flowing stream ("geysering"). It also discusses the issues of static electricity buildup and
vapor accumulation and associated potential hazards.

4.3.1. Weathering

LNG as delivered to a storage facility often has a mixture of methane, ethane, propane, and butane,
with lesser amounts of other hydrocarbons. Typically, the methane content of LNG is at least 95%, though
weathered LNG can have methane contents as low as 85%. While weathering is an issue in peakshaving
plants, the LNG used for vehicles is generally of high purity (e.g. 99.5% methane, Pentz 1995) and is used
at a high rate. Both factors greatly decrease the importance of weathering in the use of LNG as a vehicle
fuel.

Although weathering is generally not important in vehicular use, operators should be familiar with
the phenomena when handling impure fuel or storing it for extended periods. A comparison of the vapor
pressures and heats of combustion for four energy gases is shown in Table 4-5. Note that, at 150°K the
vapor pressure of methane is two orders of magnitude higher than that of ethane and probably three and
four orders of magnitude higher than that of propane and butane, respectively. Thus the ullage volume at
the top of a storage tank of LNG will contain vapor that is at least 99% methane. As that vapor volume is
vented or consumed, methane will be selectively extracted from the liquid and the methane content of the
liquid will decrease. Since the volumetric energy content of ethane is nearly twice that of methane, the
energy density of the remaining fuel increases.

Weathering in vehicle tanks is not a problem when the vehicles are frequently refucled. Operational issues
include engine knock (and possible damage) caused by the use of lower octane fuel (the octane rating of
pure methane is about 140, while that of 2 90% methane/10% ethane mixture is about 134). Weathering is
a safety issue in that the energy required to initiate a detonation in ethane is about two orders of magnitude
lower than that for methane.

The rate of weathering is dependent on the rate of heat leakage through the insulation into the storage
tank, since the boil-off of the methane is the primary heat absorption process. Shah and Aarts (Shah 1974)
have developed correlations for predicting the rate of weathering in storage tanks. Typically, weathering
times are around 150 days for a 48,000-m’ storage tank with a boil-off rate of 0.05% per day. Weathering
times for a 125,000-m® LNG carrier ship having a boil-off rate of 0.25% per day are around 10 days.




Table 4-5. Vapor pressures and heats of combustion for four energy gases.

Vapor Pressures
(MPa)
Heat of
100°K 125°K 150°K 175°K 200°K Combustion
(-2794°F)  (2344°F)  (-1894°F)  (-1444°F)  (-99.4°F) (MJ/m3)
Methane 0.0345 0.2694 1.041 2.78 - 39.77
Ethane — — 0.0096 0.2563 02200  69.67
Propane - - — — 0.0200  99.16
Butane — — — — 0.0019  128.57

Weathering can be reduced by several techniques. High methane contents (e.g. 99%) can be
specified in the fuel purchase contract. Fuel to be consumed in a vehicle should be taken from the liquid
contents of the vehicle tank to prevent a long term buildup of ethane. Both storage and vehicle tanks should
be well insulated to reduce vaporization in the tanks as much as possible. The effects of weathering in
large storage tanks can also be reduced through mechanical refrigeration and reliquefaction of the ullage
vapor. Vehicle tanks are designed to use only 90% of the gross tank volume to reduce the rate of pressure
rise in the ullage® and the subsequent venting of methane-rich vapors. In order to prevent venting of the
vehicle tanks in potentially hazardous locations, such as within an enclosure, fueling schedules should be
arranged to assure rapid turnover of the fuel in both the storage and vehicle tanks.

4.3.2. Rollover

Rollover is a phenomenon seen in large (>30,000-gallon) storage tanks when new LNG is added to
LNG of a different composition already in the tank. The mixing of the two compositions can cause large,
unexpected and sudden releases of vapor, commonly referred to as ‘rollover.” This rollover causes a
pressure rise in the tank and may challenge the pressure or venting capacity of the tank. No damage has
been reported in any incidents of rollover, but the magnitude and rate of vapor release must be accounted
for in storage tank design (Drake 1973).

New LNG being added to a storage tank is usually higher in methane content than the LNG already
present, due to weathering. The colder, lighter LNG added to the top of the tank forms one convective
cell, driven by heat inleakage through the walls of the tank and boiloff at the surface. The older, heavier,
warmer LNG already in the tank forms a cell at the bottom of the tank, also driven by heat inleakage, but
without boiloff. These cells remain separate until heat and mass transfer processes bring the upper and
lower layer densities close enough to allow rapid mixing. When that mixing takes place, the warmer lower
layer in the tank heats the methane-rich upper layer, causing the rapid evolution of methane gas into the
ullage volume.

g. Note that pressure in the ullage volume increases faster when the vehicle is not in use than while fuel is being consumed.

h. The new LNG has higher methane content and is therefore lighter than the older, weathered methane.
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Large bulk tanks are equipped with top-fill vapor collapse headers which can reduce é.ny possible
effects of associated with non-methane content of the vapor space. Operational procedures should assure
the use of the top-fill headers when warranted.

The dangers of rollover can be reduced or ¢liminated by three actions in the loading of an LNG
storage tank. First, the formation of separate convective cells can be avoided if there is adequate mixing of
the incoming LNG with all the LNG previously in the tank. This mixing can be done with recirculation
pumps, which, however, increase the heating of the LNG. Another approach uses the momentum of the
feed stream to mix the incoming with the stored LNG. Buoyant forces can aid in mixing if lighter LNG is
always bottom-loaded and heavier LNG is always top loaded.

Overpressurization of the storage tank during a rollover can be avoided if venting or pressure
capacity is adequate to handle the maximum amount of vapor that can be generated during a rollover.
Finally, concerns for rollover (and weathering) can be reduced if the range of LNG compositions to be
added to the tank is limited. In recent years, the methane content of LNG has increased and become more
consistent because of more thorough removal of ethane, propane and butane at the liquefaction plant.

4.3.3. Geysering

Geysering is caused by heat inleakage to a feed or vent pipe connected to both the bottom and upper
portions of a deep storage tank (Morioka 1986). Because the area to volume ratio is higher for the pipe
than for the overall tank, the fluid in the pipe becomes heated above saturation, forming bubbles and
decreasing in density. The bubbles cause upward flow through the pipe and possible rapid methane vapor
evolution in the ullage volume. Because the heat transfer rates are low and the mass of LNG is large,
geysering sometimes develops into a transient phenomenon called bumping. Bumping is more frequent in
vertical pipes. Transient boiling and condensation within piping to an LNG storage tank can also cause
‘water hammer’ and possible damage to the piping system.

4.3.4. Static Electricity and Grounding

Static electricity is the separation of positive and negative charges and the continued separation of
the charges because no conducting path is available for the charges to reunite. Static electricity can be
generated by friction in flowing low conductivity fluids, such as gasoline or LNG. Static electricity can
also be generated by friction between solid surfaces or by connection to atmospheric static discharges. Five
conditions must be present to produce a static spark capable of igniting a flammable mixture:

1. A mechanism for generating the static charge separation

2. A means of accumulating the charge, i.e. a capacitance

3. A suitable gap across which the previously separated charges can flow

4. A voltage difference across the gap sufficient to cause electrical breakdown

5. Sufficient energy released in the spark to meet the minimum ignition energy requirements of
the flammable mixture (Mancini 1988). '

As discussed earlier, the ignition energy for both methane and gasoline is about 0.3 mJ. Gasoline is
usually carried in metal tanks and the flexible hose and spout are electrically bonded. Furthermore, the
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area surrounding gasoline pumps is usually concrete, to resist chemical attack from spilled gasoline. The
electrical conductivity of concrete is about two orders of magnitude higher than that of asphalt. Thus
charges separated by friction in the flow of gasoline are reunited along paths in the hose, concrete, and
tires.

Because of its cryogenic properties, LNG is transferred in metal rather than rubber or plastic hoses
and tanks. Seals are also generally metallic. Thus separated charges flow through the metal bellows hoses
and nozzle connections without sparking. For added safety, a separate grounding wire has been provided at
each of the refueling stations we visited. It is not clear that such a separate wire is needed. (As it turns
out, because the wire can become entangled with the LNG fill hose, particularly in one facility, the
grounding wire was not always used. If the function of the grounding wire is needed, the design of future
stations should rely on intrinsic grounding and bonding mechanisms and not rely on the operator’s
attaching a separate grounding wire.)

4.3.5. Vapor Accumulation

The accident at Cove Point, Maryland on October 6, 1979, in which one person was killed, was the
result of vapor accumulation in a motor controller building. The vapor flowed into the building through an
improperly sealed conduit from a submerged pump to the building. Since the LNG was not odorized, and
since there were no methane sensors in the building, the supervisor did not recognize that natural gas had
accumulated in the building and a spark from the control circuitry in a cabinet ignited an explosion (see
Section 2.3.3).

While accumulation of a flammable mixture and ignition of an explosion of methane in the open air
is difficult, vapor accumulation within a building can easily result in large volumes of an explosive
mixture. Furthermore, the reflection of shock waves off the interior walls, floor and ceiling intensify the
shock heating process and therefore reduce the energy required to initiate a detonation. Thus a prime
concern in the handling of LNG is the accumulation of vapors within enclosures.

After the Cove Point accident a number of changes were mandated in the design and construction of
LNG facilities. Among those changes was the requirement for vents and a section of solid conductor in any
conduit run between any source of natural gas and an ignition source. The vents are located outside of any
enclosure and release any vapors flowing within the conduit. The solid conductor interrupts the vapor path
in the interstitial passages between stranded conductor. Tests done after the Cove Point accident indicated
that vapors could flow along the interstices mstrandedvmelfthednvmgpr&ssurels sufficient (NTSB
1980, Van Meerbeke 1982, IFC 1980).

4.4. Phenomena Under Accident Conditions

Under accident conditions, a quantity of LNG may be spilled on the ground or on a water surface.
The flow, dispersion, and possible ignition of the LNG vapors following such a spill in large part determine
the severity of the accident. As a low density cryogenic liquid, LNG has several characteristics different
from those of more common liquid fuels.




4.4.1. Spills

LNG is stored and transferred at pressures of 45 to 200 psi (0.3 to 1.4 MPa). As noted in Table
4-2, the viscosity of liquid methane at 112°K,, its boiling point at atmospheric pressure, is 0.00113 g/cm-s.
By comparison, the viscosity of gasoline is 0.002 g/cm-s and that of water is roughly the same in the range
300°K to 400°K. Thus, LNG can be expected to spill and flow somewhat more easily than water.

4.4.2. Dispersion

The dispersion of methane after a spill of LNG has been the subject of several series of experiments
over the last thirty years. Several phenomena govern the behavior of methane after the open pool of liquid
has been established. The LNG is vaporized by heat input from the underlying water or soil, from the air
above the pool and from insolation. Spills on water can continue to draw heat from the water because of its
high thermal capacity and convective currents. However, spills on soils cause freezing of the soil and a
marked decrease in thermal conductivity. In a deep pool of LNG, convective currents will be formed in the
pool itself.

The critical parameter in the investigation of vapor dispersion is the extent of the region wherein the
methane concentration is between the upper and lower flammability limits, i.e. between 5 and 15 volume
percent. Unlike gasoline and propane, methane is lighter than air when in thermal equilibrium and thus the
vapor will rise when warmed sufficiently by the surroundings. As stated earlier in this section, methane at
165°K has the same density as air at 300°K. Thus, the methane vapor will begin to rise as soon as it is
warmed (by the water, soil, and air) from its release temperature of 115-120°K to 165°K.

Finite element models have been developed to simulate the dispersion of LNG and its vapor after a
spill. These models and the experiments that validated the models are discussed later in this section and in

Chan (1992).
4.4.3. Boiling Liquid Expanding Vapor Explosions

A Boiling Liquid Expanding Vapor Explosion (BLEVE) occurs as a result of a fire surrounding a
pressure or other storage vessel containing flammable liquid. Typically, the fire is fed by a leak in the
storage vessel. The liquid within the vessel heats up and the pressure rises. Relief valves are challenged to
open at their set point pressures, but if the valves are not large enough, or do not function on demand, then
the flow through the valve is insufficient to reduce the pressure and in any case, flammable liquid or vapor
issuing from the relief valve further intensifies the fire beneath the storage vessel. The walls of the vessel
begin to creep as their temperature rises and finally the wall fails, often in a lower portion of the tank
exposed to the most intense external fire. At this point the remaining contents of the tanks are discharged
to the atmosphere in a preheated condition and are immediately ignited by the initial fire, exploding in a
classic mushroom fireball. The blast effects of such explosions are not usually too severe, but debris may
be scattered over a wide area (Thomson 1987). Often there is a domino effect, where the first BLEVE
scatters debris which lights further fires and causes additional vessel failures. In the U.S., there were
twelve BLEVES between 1970 and 1975 (GAO 1978). Several of these were in strings of railroad tank
cars carrying propane. A derailment would cause the failure of one or a few cars and the ensuing fire
would cause a BLEVE in those cars with a domino effect to the other cars.

Several distinctions between propane and LNG tank cars are worthy of note. First, since LNG must
be shipped at 112-130°K, the storage and transport tanks are well insulated from the external atmosphere.
The external shell must be strong enough to maintain the annular vacuum insulation, but the pressure
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boundary is the internal shell. On the other hand, tanks for the shipment and storage of propane are single-
walled and often uninsulated, since propane is a liquid at 300°K and 1.0 MPa (145 psi). Thus heating of
the walls and heat transport to the stored liquid are much more rapid with propane than with LNG. Our
research has found no reports of BLEVEs involving LNG, though we have obtained reports of propane
BLEVE:s from several sources.

The incidence of propane BLEVES has decreased markedly since the 1970s due to federally
mandated improvements to railcars, such as end shicelds for the tanks, couplers which would not slip apart
during a derailment and protection of valving. The improved couplers were necessary because the initial
tank failures were often caused by the coupler of an adjacent car.

4.4.4. Unconfined Vapor Cloud Explosions

Unconfined vapor cloud explosions (UVCES) occur when a cloud of flammable vapor is released and
becomes mixed with the air over a period of time before ignition occurs. If the mixture then detonates, it
produces a shock wave traveling at a few kilometers per second and overpressures of a few atmospheres.

As discussed elsewhere in this section, Bull and coworkers (Bull 1976) ignited UVCEs in mixtures
of methane, oxygen, and nitrogen. He found, by extrapolation, that 22 kg of high explosive would be
necessary to detonate a methane air mixture, but that propane and ethane could be ignited by a few tens of
grams. Furthermore, at the same temperature and pressure, methane is about 0.55 the density of air, while
ethane and propane are 1.03 and 1.52 times the density of air, respectively. Thus, methane disperses into
the atmosphere as it heats while ethane, propane, and heavier hydrocarbons vapors can flow into low spots
at ground level. The likelihood of a methane cloud detonation therefore appears to be low.

A methane cloud deflagration, on the other hand, is possible. Gugan (1979) reports an unconfined
vapor cloud explosion involving a perhaps 500 kg cloud of methane at a chemical process plant on a cold
(-12°F) day. The cloud edge was some 50 meters away from its source when ignition occurred. The
explosion broke several windows (the flying glass caused numerous injuries, some of them serious) but
otherwise caused little damage. The damage observed (which implies a relatively slow speed of pressure
rise) indicates that the explosion did not involve a detonation.

4.5. Experiments

The U.S. Department of Energy (DOE) has constructed the Liquefied Gaseous Fuels Spill Test
Facility (LGFSTF) on and adjacent to the dry bed of Frenchman Lake at the Nevada Test Site, 75 miles
northwest of Las Vegas (Leone 1990). One feature of the LGFSTF is the Large Scale Test Area, where
the storage tanks can supply spill rates of 5 to 100 m*/min (1000 to 26,000 gpm) onto ground or water
surfaces. The cryogenic system can supply total spill volumes of 5 to 200 m* (1000 to 53,000 gallons).
The LGFSTF has the capability to test phenomena such as source definition, dispersion, rapid phase
transition, pool fire and vapor burn.

i. Xtis not known if this possibility should be discounted entirely, as deflagration-to-detonation transitions are possible in
UVCEs, depending on the size of the cloud and various environmental conditions.
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In 1987 the Gas Research Institute and the U.S. DOT performed a series of five releases of LNG
ranging from 6500 gallons to 26,000 gallons. The program tested the effectiveness of vapor fences in
mitigating LNG releases at peakshaving plants.

The parameters for four of the five 1987 experiments are shown in Table 4-6 (Chan 1992). The last
column contains the results of a numerical simulation of the Falcon-4 experiment in which the
vapor-dispersing fence was removed from the model. Note that the spill volumes range from 5,400 to
17,500 gallons, easily encompassing the largest size tanker truck expected at an LNG refueling station.

The first three tests had spill durations of less than three minutes, while the fourth test had a spill duration
of slightly over five minutes. Winds were light and the weather conditions were moderately stable. The
spills were made on the surface of a 60 m x 40 m pond, about 0.76 m deep. The fiberglass vapor fence
surrounding the pond was 44 m wide and 88 m long and 8.7 m high. The test area also included a
billboard-line barrier 17.1 m long and 13.3 m high. The purpose of the tests was to validate the codes and

Table 4-6. Parameters for Falcon experiments.

Falcon-4

Falcon-1 Falcon-2 Falcon-3 Falcon-4 (simulation, no fence)
Spill volume (m®) 66.4 20.6 50.7 449 449
Spill volume (gallons) 17540 5440 13400 11860 11860
Spill rate (m’/min) 28.7 15.9 18.9 8.7 8.7
Spill rate (gpm) 7580 4200 4990 2300 2300
Average windspeedat 1.7 4.7 4.1 52 52
2 m (m/s)
Average windspeed at 3.8 10.5 9.2 11.6 11.6
2 m (mph)
Pasquill stabilityclass G D D D/E D/E
Downwind distanceto = 440 {200] 353 203 [365]
2.5 volume %
concentration (m)
Downwind distance to 1444 [656] 1158 666 [1198]
2.5 volume %
concentration (ft)
Downwind distanceto 330 [70] 230 28 [230]
5 volume %
concentration (m)
Downwind distanceto 1083 [230] 755 92 [755]
5 volume %
concentration (ft)

Distances in brackets are results from FEM3A runs; other distances are experimental data
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wind tunnel model used in simulating vapor dispersion and to assess the effectiveness of vapor fences for
mitigating LNG vapor dispersion hazards in the event of a large accidental spill. The code FEM3A
generally predicted the results of the experiments within 25%, though the experimental downwind 5%
concentration distance was less than 45% of the distance predicted by the model.

Experimental results and the simulation of Falcon-4 without a vapor fence indicated that a vapor
fence has the following advantages: significantly reduced methane concentrations in the near field, delayed
cloud arrival times at downwind locations, and a much shorter downwind distance where the methane
concentration is in the flammable range. However, a vapor fence retains the vapor cloud longer near the
source, thus increasing the potential for ignition. Methane concentrations within the vapor fence were
above the upper flammable limit (15 vol. %) for the first four minutes of the Falcon-1 and Falcon-4 tests.
(Interior concentrations were not reported for the other tests.)

Earlier, some 130 experimental spills of LNG on water were carried out between 1970 and 1981
(Puttock 1982). Liquid volumes spilled ranged from 0.04 m’ to 198 m>. Sixteen of the tests were
intentionally ignited. Spills onto ground were conducted by Gaz de France at Nantes in 1972 and by
Battelle/AGA near San Clemente in 1974. In the ground spills, evaporation from a soil surface rapidly
decreased as the soil cooled and the maximum hazard occurred soon after the LNG was spilled. Because of
water in the soil and humidity in the air, a visible cloud was observed to separate from the plume remaining
after the initial burst of vapor. It was found from concentration measurements that the flammable region
was always contained within the visible cloud.

Shell conducted about ten experimental spills of LNG, eight continuous and two instantaneous in
late summer 1980 at Maplin Sands along the Thames: Spill volumes were between 4 m® and 20 m’.
Instrumentation surrounded the spill site on a tidal flat in a semi-circular pattern, 400 m in radius. In one
of the tests, LNG was injected as a jet 0.25 m below the water surface at the rate of 3.9 m*/min for 5.0
minutes. The LNG formed a highly buoyant cloud which passed above even the closest methane sensors
located 2.4 m above the sea surface and 40 m from the release point. This test is good indication that the
rapid phase transitions caused by mixing of LNG and water are not violent.

4.6. Current Outstanding Issues in LNG Safety

In an October 15, 1996 memo to Thomas Grumbly (Hunt 1996) Peter Hunt raised a number of
important safety issues in the use of LNG as a transportation fuel. The issues involve:

. The hazard of a fire or explosion in the methane vapor cloud released in an LNG spill
. The danger of lung damage or asphyxiation due to the low temperature of the vapor cloud
° Material failures due to contraction and embrittlement if structural steel is exposed to LNG

. The rapid phase transition that will occur if LNG is injected into water or another warm
Liquid.
Our review of the literature and field observations lead to the following conclusions about the status of each
of these issues.
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Regarding the first issue, DOE and the LNG industry have conducted both experiments and
numerical simulations of the release and dispersions of large quantities of LNG, as noted in the preceding
section. These tests have resulted in the development of guidelines for the size of LNG facilities to assure
no offsite transport of flammable mixtures (Ong 1985). However, it is not clear if these guidelines are
being met; based on the results of the Falcon tests and associated simulations, it appears that under some
weather conditions, credible (though quite unlikely) spills at two of the facilities visited can lead to
flammable concentrations offsite.

The DOE and industry tests and simulations have also led to the development of vapor fences
surrounding LNG storage tanks that greatly reduce the region of flammability (Chan 1992). Again, it is
not clear that these fences are widely deployed; none of the facilities visited had fences especially designed
to enhance LNG vapor dispersion. (Note that the effectiveness of conventional, e.g., chain link, fences in
dispersing LNG is also unclear.)

If a large release occurs and is not quickly dispersed, unconfined methane vapor cloud explosions are

~ possible (see Section 4.4.4). Although such explosions are unlikely to involve detonations, deﬂagrauons

are capable of causing extensive injuries and property damage.

Regarding the second issue, there clearly is a danger of asphyxiation and lung damage if one enters a
low temperature LNG cloud. Such accidents are not expected to be common events, since the cloud is
usually quite visible in the daytime due to condensation of humidity from the air. Furthermore, areas where
such cold clouds can accumulate are normally contained within a bund wall or pit surrounding an LNG
storage tank, where workers are not routinely present and where the public should not be allowed.
However, the possibility of these accidents cannot be discounted; analogous occurrences have been
observed in non-LNG facilities. (For example, Medard (1970) describes a 1968 event in France in which a
semi-trailer truck filled with ammonia ruptured. The release formed a white, mushroom shaped cloud. Six
nearby workers went to investigate the noise and were enveloped by the cloud; three collapsed and died.)

Regarding the third issue, material failures have occurred on LNG carrier ships when LNG has
spilled on steel deck plates, causing contraction and brittle failure. However, these incidents apparently
have not involved widespread damage and have not led to severe consequences (Harris 1993 and
Frondeville 1977). It should be noted that the 1944 Cleveland accident was caused by a material failure of
the tank wall itself. That grade of steel, containing 3.5% nickel, is no longer used for LNG tanks; 9%
nickel steel is used instead. This change precludes tank membrane failure by brittle fracture (assuming
there are no significant design or manufacturing errors in tank construction).

Regarding the fourth issue, a rapid phase transition is possible if LNG is finely dispersed in a much
warmer liquid, such as water at 300°K. However, the water would have to fall into the LNG or the LNG
would have to be injected below the water surface. Numerous experiments where LNG has been spilled on
the water surface have not resulted in any violent phase transitions.
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5. CASE HISTORIES OF LNG INCIDENTS

This chapter describes accident events that have occurred with facilities that handle liquefied natural gas.

. Gaseous natural gas events, such as pipeline breaks, explosions in homes, etc., are not included here.
Information about such events can be found in the literature, such as [Jones et al., 1986}, National
Transportation Safety Board pipeline accident reports, and other documents. Every effort to be thorough in
the collection of LNG events has been taken, including manual, computerized, and internet literature
searches. It is possible that some events, especially events outside the U.S., may not have been captured by
these searches, but it is believed that any event which might have been overlooked is not as consequential as
those events that have been captured. These events are discussed in chronological order.

5.1. East Ohio Gas Co. Explosion [BOM, 1946]

The cold wave of the winter of 1940 taxed the gas supply to Cleveland, Ohio. To augment the gas supply,
the gas company could have either built a 12-inch diameter high pressure pipeline from the Hope Natural
Gas Company to Cleveland (150 miles distant) at a cost of $2.5M, or they could store gas from existing
pipelines by using a liquefaction and storage plant in Cleveland at an estimated cost of $0.75M. Erection
of the liquefaction plant began in September 1940 and was completed in January 1941. The plant, the
largest of its kind in the world, proved to be successful. In 1943, a cylindrical storage tank was added to
increase LNG storage to meet Cleveland's peak gas demands while still supplying the increased base load
demand for war industries. At 2:40 pm on October 20, 1944, the cylindrical LNG storage tank of the East
Ohio Gas Company failed, spilling 1.1 million gallons of liquefied natural gas.

The results of this release were disastrous. The cylindrical tank apparently cracked and then collapsed.

The release began as cold vapor and then liquid flowed out. The liquid rushed over the short dam around
the tank. The surging liquid was energetic enough to move parked automobiles. While much of the LNG
vaporized, some ran into the storm sewer at 66th Street. The LNG vapor was burning atop the flow of
LNG, but investigators did not try to locate the ignition source since many were available in nearby
machine shops, electrical instruments, compressor house, etc. Flames were estimated to reach about 0.5
mile above the tank. Dwellings near the plant site were ignited by radiant heating from the burning gas, or
gas up from the sewer was ignited inside the buildings. A north-northeast wind drifted the burning gas over
buildings on 61st Street, and the buildings canght fire. The investigation report also states that gas leaked
into some basements of buildings on 61st and 62nd Streets, formed an explosive mixture and ignited, razing
the buildings. ’

The heat from the fire caused heatup and failure of one of the nearby spherical (57 foot inner diameter)
storage tanks. About 20 minutes into the event, it spilled its entire contents, about half the amount that was
stored in the cylindrical tank.
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The LNG that reached the storm sewer system at 62nd Street vaporized and was ignited. The overpressure
from the deflagration caused streets to crack or collapse, and weakened building foundations. Buildings
caught fire from the radiant heat from the burning tank and from the deflagration. The fire damage was
seen to extend about 0.25 mile in a radius around the cylindrical tank.

The cylindrical tank was made from 3.5% nickel steel, which was judged by metallurgists of the time to be
an acceptable material for cryogenic applications. The nickel steel was also less expensive than other
materials known to be acceptable for cryogenic uses (copper, bronze, Monel, red brass, and stainless steel).
Since this event, it is known that 9% nickel steel will not embrittle like 3.5% nickel steel. The 3.5% nickel
steel is no longer used for cryogenic applications.

Other investigator recommendations were to build dams around the tanks that would confine large spills,
not just small leaks. Ignition sources were to be excluded from the vicinity of tanks. Remote siting of at
least a half-mile distance was strongly recommended.

In this event, 128 people died and hundreds more were injured. The property damage cost of the event was
estimated to be $6.8M in 1944 ($65M in 1997 dollars). This event has been credited with delaying the
liquefaction and storage of LNG in the U.S. for over 20 years [Zabetakis, 1967].

An events and causal factors table is given in Table 5-1. In this case, the initiating event is rather
straightforward, a materials failure. Aggravating conditions were the site's proximity to a city, the small
bund wall around each of the tanks, the spherical tank supports that allowed tank collapse, and site
elevations that allowed LNG to drain to storm sewers.

5.2. Raunheim, Germany explosion [CCPS, 1994]

On January 16, 1966, a plant was unintentionally venting methane to the atmosphere. The LNG was
passed through a vaporizer. The vaporizer used a liquid level controller to operate the vaporizer below its
maximum capacity of 4000 kg. The exact cause of the release is not known; apparently, the liquid level
controller failed and allowed a slug of liquid methane to be ejected from the vaporizer's gas vent (probably
Iess than 500 kg of LNG was released). This release occurred at the top of the vaporizer vent (25 m high).
Control room operators saw a white cloud slowly expanding and drifting toward the control room, which
was 50 m from the vaporizer. The outside temperature was 10 °F, with low wind. The cloud ignited,
probably from ground level furnaces that were 50 m from the cloud in the opposite direction as the control
room. One person was killed and seventy-five were injured, primarily from flying glass.

This event description was not detailed enough to construct an events and causal factors table.
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5.3. Portland, Oregon LNG tank explosion [ENR, 1968]

The details of this event are few. In March 1968, workmen were completing construction of a 118 foot
diameter, 95 feet tall LNG storage tank in Portland, Oregon. The tank was believed to be the largest of its
kind in the U.S. at the time. The inner tank was made of aluminum, with a perlite insulation annulus and a
steel outer shell. Natural gas from inlet lines had apparently leaked into the inner tank. A slip blind (i.c., a
blank flange, or cutoff) had been removed from a pipe six days before the accident to allow insulation
operations on the valve and a valve had been partially opened (24 threads on the valve stem), apparently to
test the 6-inch diameter line. Natural gas, routinely used to perform leak tests at the facility, had backed
through the no-longer-isolated line and the partially opened valve to accumulate inside the aluminum tank.
The gas was ignited by an unspecified source and four workmen in the tank were killed in the explosion.

This event description was not detailed enough to construct an events and causal factors table.

5.4. Quebec, Canada control room explosion [LNG, 1972]

On January 27, 1972, a natural gas explosion severely damaged the control room of the LNG liquefaction
and peakshaving plant in Montreal East, Quebec. This plant was operated by Gaz Metropolitain, At the
time of the explosion, the plant was operating in peak mode, that is, it was vaporizing stored LNG,
reodorizing the gas, and sending it to the gas distribution piping. The plant used a 75-psi nitrogen gas
system for manually controlled purging of equipment for startup, shutdown, and maintenance,
pressurization of gas storage tanks, backup of the instrument air system, and as a seal gas onthe
compressors when they are derimed (i.e., defrosted). Shortly before the explosion, the recycle compressor
had been derimed. Typically, at the end of the deriming cycle, the compressor is filled with 250 to 350 psi
warm natural gas from the pipeline. During this derime, the instrument air compressor was shut down for
maintenance and the pneumatically controlled instruments were being operated using the 75 psi nitrogen
backup. Three manual shutoff valves between the nitrogen system and the recycle compressor were
inadvertently left open, allowing natural gas at a minimum of 250 psi to back up into the 75 psi nitrogen
system. As a result, the instrumentation was running on unodorized natural gas instead of air or nitrogen.
Some unodorized natural gas vented from the instruments into the control room. The gas rose to the ceiling
and began banking down toward the floor. The control room was considered a non-hazardous area because
normally there are no flammable gases or vapors present. Two of the five operators were smoking at their
control panels, which was permitted under company rules for non hazardous locations. The two smokers
saw flames flash toward the instrument control panels and the explosion occurred. Being somewhat
protected by the instrument control panels, the five operators sustained only minor injuries. The blast
vented to the rear and sides of the room, and through the roof. The fires that followed were confined to

- paint on the panels and plastic instrument faces.

, This event shows the importance of monitoring where the natural gas is being used in the plant. An event
) and causal factor table was not constructed since insufficient information was provided about the factors in
this event.




5.5. Staten Island LNG tank explosion [GPO, 1973]

The Texas Eastern Transmission Company (TETCo) and its satellite company Texas Eastern Cryogenics
Company owned an LNG storage tank on Staten Island. This tank was built of concrete and used an inner
layer of thermal insulation and a tank liner held in place by aluminum struts. The insulation was
polyurethane with a protective liner of mylar and aluminum, then another 1 inch thick polyurethane coat on
the mylar. Other storage tanks of this era used perlite as thermal insulation, but the size of this tank (168
feet in diameter, 61~foot cylinder with a domed roof, and 24 inch thick concrete walls) meant that it
required better insulation. The tank became operational in April 1970. The tank was determined to be
leaking LNG through the liner in 1971. The tank was emptied of LNG in February 1972 and was entered
while under one atmosphere of nitrogen gas in March 1972 to identify the leak location. The location could
not be found under those inspection conditions, so the tank was brought to air at ambient conditions. With
this easier inspectability, a ten foot long rip in the liner bottom was discovered. A decision was made to
repair the rip and to augment the tank for holding heavier LNG (colder LNG required additional ballast
blocks, downcomers and nozzles, and a splash plate). This repair and augmentation work commenced on
the tank. On February 10, 1973, at about 1 p.m., a fire swept through the tank. The overpressure (over 1
psig) caused by hot combustion products in the tank caused the tank roof to raise. The roof fractured and
fell in pieces back into the tank. 40 workmen were trapped in the tank when the roof collapsed.

The fire is believed to have been an insulation fire - burning polyurethane insulation, believed to be
accelerated by trapped pockets of methane gas that lingered from when LNG had leaked into the insulation
while the liner had been breached. Some speculation exists that the falling barometric pressure allowed the
polyurethane to give off some of the trapped methane gas, making it easy to ignite a fire while workmen
were repairing the liner. Since the tank had been warm for about 11 months prior to the event, this was not
an LNG event; it was a gaseous methane and combustible insulation event. Nonetheless, it is included here
since many safety researchers include the LNG tank as LNG equipment.

The fire may have been ignited by any of several tools in use in the tank. Electric fans were in use to move
air for ventilation where epoxy giue was in use to secure ballast blocks to the floor and where the fire watch
noted a methane buildup (the fans dispersed it throughout the tank). Electric irons were in use to seal strips
of mylar liner to each other. Vacuum cleaners were used to clean the tank of any debris prior to gluing or
sealing operations. Two-way radios and floodlights were in use in the tank. However, personnel were
required to wear only cotton clothing and cotton slippers (to protect the liner and reduce static electricity),
and leave all smoking materials outside to eliminate an ignition source and maintain cleanliness in the tank.
Unfortunately, smoking materials were found on three of the deceased workmen, so this ignition source
cannot be ruled out. A very old .22 caliber handgun was found on the remains of one worker, but the spent
cartridges showed no firing pin marks (investigators believed that the fire heat caused the bullets to fire;
this fact and the location where the firearm was found indicate that it was not the ignition source). Most of
the repair equipment was not explosion proof. One of the small hand irons used for mylar repair was tested
and found to not ignite a methane-air flammable atmosphere in a test chamber until it was unplugged (i.e.,
the sparks created by pulling the plug from the electrical socket). There was new polyurethane and
polyethylene sheeting in the tank as well as mylar to serve as fuel during a fire. Bureau of Mines testing
showed that adding methane hydrocarbon gas to polyurethane would easily allow faster burning and give
the pressure rise needed to lift the tank roof. While the polyurethane would easily ignite and burn without
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any other hydrocarbons present, the Bureau of Mines believed that pressure rise would not be enough to Lift
the tank roof; therefore, the trapped methane increased the severity of the event. The workmen died of
asphyxiation, as reported by the Medical Examiner. Apparently, the rapid burning fire had simultaneously
taken oxygen from the air and filled the tank with combustion products. The workers' positions did not
indicate any bunching up at the scaffold stairway to exit, nor were there any clusters of workers at the
safety shack in the center of the tank. Although the tank roof collapsed rather quickly in this tragic event,
the postmortem indicated asphyxiation as the cause of death for the 40 men.

An events and causal factors table for this event is given in Table 5-2.

5.6. Cove Point, Maryland explosion at a peakshaving plant
[NTSB, 1980; GPO, 1980]

The LNG peakshaving facility located at Cove Point, Maryland, began operation on March 13, 1978.
Cove Pomnt is located in a sparsely populated area about 60 miles south of Baltimore, Maryland, 50 miles

southeast of Washington DC, and about 80 miles northeast of Richmond, Virginia. No part of the facility
was closer than 0.33 mile from the company's property line. The facility received deliveries from tanker
ships that brought LNG from Algeria, Africa. The LNG was off-loaded into two 32-inch pipes at low
pressure into four large (about 16 million gallons each) storage tanks. The tank pressure is under 2 psig.
‘When needed, the LNG is pumped at 60 psig in one pumping stage, then booster pumped up to 1300 psig.
The high pressure LNG is vaporized to 55 F and injected into a 36 inch diameter transmission pipeline.

The ten booster pumps that raise LNG from 60 to 1300 psig are pump-motor units totally submerged in
LNG within pressure vessels. The benefits of submerged pumps are that there is no pump shaft seal, the
LNG provides cooling to the motor, and the only penetrations are for fluid flow and 4160 Voit three-phase
power to the 1250 horsepower electric motor. Rotating shaft seals are reputed to leak more frequently than
fixed seals, and they require more maintenance. The three electrical cables that sent power to the motor
passed through penetrations that prevent LNG vapors from leaking out of the pressure vessel. The
penetration serves as an electrical insulator and high pressure seal material. G-10, a synthetic insulator (an
epoxy impregnated glass fiber; this material hardens into a strong solid material), and asbestos were used to
seal the electrical junction box from the pump's pressure vessel.

In normal conditions, small amounts of heating from the electrical cables would vaporize some LNG and
thus form a small, warm gas zone or barrier at the seal location so that no LNG touched the penetration
seal during pump operation. The electrical conduits from the junction box were constructed of polyvinyl
chloride piping encased in concrete. The conduit also had a seal where wires passed through sealing
compound. That type of seal was rated for only 0.25 psig pressure difference, according to an
Underwriters Laboratories standard. Reference [GPO, 1980] discusses how the intent of the National
Electric Code was not met by this design, since the second seal was not LNG-proof. Reference [GPO,
1980] contends that the Department of Transportation's Materials Transportation Board acted in haste
when adopting the National Electrical Code for cryogenic facilities.

One of the ten booster pumps, pump 105JK, developed a seal leak at the electrical cable penetration,
probably the gas leaked first, then LNG contacted the electrical penetration and that increased the leak rate
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until LNG was leaking into the junction box. LNG flowed from the junction box to the conduit. The
natural gas in the conduit warmed and the pressure of expansion was much greater than what the 0.25 psig
conduit seal could withstand.

On October 6, 1979, the Cove Point plant was in storage mode. The booster pumps were not operating,
but they were being held at 60 psig and at LNG temperature (this is typical for a cryogenic plant to
maintain equipment at cryogenic temperatures to avoid time-consuming, wearing, and costly warm-up and
cool-down cycles). The 1:30 a.m. operator walkthrough did not detect any unusual events. At about 3:10
a.m., another operator left monitor house No. 1 to take equipment readings. At about 3:20 a.m., he radioed
the operator/controller at monitor house No. 1 that he had found LNG leakage into the second stage
pumphouse. There was radio interference, but his report was understood well enough in the monitor house.
The roving shift supervisor was in monitor house No. 1 and heard the report. He left to assist the operator.
The operator radioed again to say that the leak was from pump 105JK, with LNG leaking from that pump's
electrical junction box in the pump house. Note that in reference [GPO, 1980}, the leak is described as
liquid 'pouring out of the junction box in a ten foot radius.' The supervisor and operator determined that
the best course of action would be to isolate the pump so that it would not accidentally be started, since
remote starting was possible. At about 3:30 a.m., the supervisor telephoned the monitor house No. 1 to
inform the operator there that he would disengage the circuit breaker for the 105JK pump in the Substation
No 2 building. At 3:34 a.m., the operator depressed the circuit breaker interlock release, and an explosion
followed which destroyed Substation No. 2, several electrical transformers, and heavily damaged adjacent
structures. Transformer oil spread over the area and ignited.

LNG does not have any odorant included with it, since most odorants will freeze out or not mix at LNG
temperatures. When the LNG vaporized, it became odorless natural gas. The LNG flooded the electrical
junction box in the pump house and then flowed into the PVC conduit for the electrical cables. There the
gas vaporized and flowed down about 210 feet of conduit into the Substation No. 2. While the Columbia
facility had 109 combustible gas indicating meters (CGIs) onsite, none were in the electrical substation No.
2 building since this building was considered to be a non-hazardous area (where gas would not be found).
The CGIs in the 105 pumphouse were operating, but did not send in an alarm although large quantities of
LNG were leaking into the pump house. Calibration dates on the CGIs showed that at least 17 months had
elapsed since the last calibration (industry consultants advised that 1 to 3 months is an adequate
recalibration period for CGIs). ' '

Investigators believed that the leak probably started in small amounts a few days, or even weeks, before the
accident. The LNG penetration seal bolts were not torqued tight enough to prevent leakage. After the
pump was shut down, 19.5 hours prior to the accident, the gas covering the penetration seal began leaking
out and then LNG touched the seal. The LNG leaked under pressure into the junction box and down the
conduit. The operator noted LNG leaking from the junction box in the pump house, but did not consider
that LNG or gas might be routed down the conduit to the electrical substation. Since the natural gas was
odorless and probably quite warm by that time, there was no indication for the operator. When the
operator opened the circuit breaker for the pump in the substation, an electric arc occurred, igniting the
natural gas that had accumulated in the building. The operator was badly burned but was rescued by other
personnel responding to the explosion. The shift supervisor was killed by a falling roof truss; the explosion
blew out the walls so that the roof collapsed [GPO, 1980].

Table 5-3 shows the events and causal factors table for this event.
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5.7. Liquefied Gaseous Fuels Spill Test Facility flash fire [NVO
1987]

Due to large scale explosion events such as the propylene explosion in East St. Louis in 1972, the Mexico
City propane explosion in 1984, and other events, The U.S. government allocated funds to construct a spill
test facility in 1982. Construction began in 1984, and the facility at the Nevada Test Site began operation
in 1986. The spill test facility performs release tests to better understand the characteristics of spill
dispersion, and to test potential barriers to mitigate effects of such spills. Objects like fences will alter the
flow of cold gas andcancausethegastoloﬁmtoﬂleausothaxdlspersxonlsachlevedmafasterume
frame [Leone, 1990].

The Falcon test series of 5 to 7 planned tests was intended to determine the usefulness of vapor barriers.

These tests were carried out in 1987. During the fifth test in the series, 13,000 gallons (50 m3) of LNG
were released to observe the gas dispersion characteristics downwind of the spill location when a vapor
barrier fence impeded the gas flow. The LNG release resulted in several rapid phase transition (RPT)
pressure explosions as the LNG quickly flashed to vapor and expanded greatly with the phase transition.
These RPT's were expected and had been witnessed in prior tests in the Falcon series.

From the video and movie camera records being taken of the test, investigators were able to determine that
a so-called 'doublet’, or two simultaneous RPTs occurred in the fifth test. After this, the information is less
definitive, only most probable causes are discussed. Apparently, one of the guy wires that was used to
support the vapor barrier parted under the load from the doublet RPT and began to whip. The gas flowed
over the vapor barrier, and the guy wire scraped against the fiberglass and aluminum barrier. The frayed
end of the guy wire cable is probably responsible for generating a static electricity spark and igniting the
methane vapors outside the vapor barrier. The "cold flame" then raced out through the vapor to the edges
of the flammable limits and also back toward the source of the methane. The fire was of short duration,
about 30 seconds, until the fuel within the flammable range was exhausted. There were no personnel
injuries, since personnel are not allowed near the test site while tests are in progress. The estimated damage
was between $70k and $95k. Other damage to the test apparatus was incurred, but since this fifth test was
declared the final test in the series, the equipment had only salvage value and was not added into the

damage estimate.
5.8. Summary

Generally, accidents have been found to be the result of a confluence of several factors or conditions;
accidents are rarely the result of just one cause. For this reason, accident investigators use the events and
causal factors method, as shown in Tables 5-1 through 5-3. The events and causal factors table supports
identification of accident causes, and the tables have been used in this summary. The multiple cause result
is seen even in the Cleveland, Ohio accident. While the main cause was material embrittlement failure,
other factors exacerbated the event. For example, siting within a city was more a decision based on
operational convenience and business costs than on safety, the low dam around the tanks meant that neither
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the company nor the regulators had considered a large failure of a tank (only small leaks were considered),
the open storm sewers only a few blocks away meant no one considered a large liquid release or else a
higher tank bund or diversion dams would have precluded the LNG from pouring into the sewers, and
ignition sources would have been precluded from the area if large releases were considered possible.

The Raunheim event did not have as much obtainable published detail as other events, but the consequences
of releasing LNG liquid when warm natural gas is expected are illustrated. A faulty process controller
allowed liquid rather than gas to be stacked. The still-cold liquid then vaporized and sank toward the
ground instead of the stack function of warm gas dispersing into the air. The white cloud seen by personnel
denoted freezing humidity from the air (note: firemen generally believe that the white cloud is a rough
demarcation of the edges of the flammable zone for LNG releases). Before the cloud could warm and
disperse, the vapor found an ignition source, probably the process furnaces onsite.

The Portland event with the storage tank involved several factors. While it was recognized that allowing
the process liquid to leak into an empty tank that is occupied by workers is very dangerous (e.g., hazardous
material exposure, fire, etc.) that was still allowed to occur due to several factors - concurrent operations
allowed a valve to be opened and the blank flange removed, and the testing gas used onsite was methane
(sometimes test gases are nitrogen or other inert gases, but these can grow to be expensive so LNG storage
sites often use vaporized product instead). This event is another case of natural gas vapors being trapped
within a volume and exploding/catching fire. A lock out/tag out program might have prevented the
concurrent operations from continuing to the point of releasing natural gas vapors into the tank, at least
until workers were finished inside the tank.

The Quebec event also had several factors that contributed to the accident. First, the instrument air
compressor went down for maintenance during a plant recycle compressor deriming cycle. Next, three
valves were inadvertently left open between the plant compressor and the nitrogen backup to the instrument
air lines. The report does not give enough detail to know why the three valves were open (possible reasons
could be that operators closed the wrong valves, neglected to verify that the valves are still closed, they
might have forgotten to perform a procedure step, etc.). These two conditions allowed the warm, high
pressure, unodorized natural gas flush from the plant compressor to flow to the instrument air system.
Unodorized gas was probably used to keep high purity in the compressor, so no odorant would freeze inside
the unit. This unodorized natural gas leaked into the control room from the instrument air lines. Since the
control room was rated as an environment that would not have any hazardous or explosive gases, operators
were allowed to smoke at their controls. The cigarette smoldering ignited the natural gas and the flame
raced into the control panels, deflagrating the gas behind the panels.

Staten Island was an unusual type of construction accident. The safety personnel recognized the hazard of
allowing natural gas to be piped into the tank while workmen were inside, so all lines were positively
valved shut and the tank was warm and empty for several months prior to starting the task. Therefore, an
event like the Portland storage tank fire could not occur with the Staten Island tank. There had been
controversy over the tank thermal insulation (polyurethane) flammability and a regulatory decision to
proceed with the tank construction was based on the idea that the risk of insulation fire was highest during
construction and the insulation was already installed before objections were raised by the Fire Department.
The idea of possible tank repair activities was not fully taken into account. Apparently, LNG leaked into
the thermal insulation under the mylar liner and then vaporized when the tank was warmed. The vapor
remained trapped in the cells of the polyurethane (the tiny cavities in the material). Investigators believed
that when the barometric pressure would drop, some methane would emanate from the polyurethane. With
the mylar liner rolled up from the base of the tank to 8 feet high to perform repairs and augmentation of the
tank, methane could escape into the tank. Apparently the methane was ignited by the work being
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performed in the tank (exact ignitor is unknown) and the burning methane ignited the polyurethane, which
burned faster than normal due to the trapped methane within it and the vertical configuration of
polyurethane that allowed the fire to pre-heat the material. The hot combustion products and heated air due
to the fire caused a slight pressurization of the tank (about 1 psig); however, this pressure was enough to
lift the tank roof and cause the roof to collapse into the tank. Since the victims were not found near work
locations and not clustered at the scaffold stairway or at the emergency shelter (a shack in the center of the
floor of the tank), the fire was fast burning. The company had received test results showing there was no
appreciable accumulation of methane in the polyurethane blocks on the LNG side of the mylar, but they did
not test the polyurethane on the other side of the mylar (which was exposed when the mylar was rolled up).
This event was another case of trapping methane gas, in this instance it was trapped in an unusual way.

The event at Cove Point was a case of not understanding the possible pathways that LNG could take. Itis
similar to the Quebec event, where gas was routed down an unlikely path. At Cove Point, a seal was not
properly tightened after a maintenance session, so LNG leaked past the electrical seal into an electrical
junction box. The pressure allowed the LNG to leak down the electrical conduit, where it warmed and
vaporized. The pressure created by the volume expansion was much more than what was needed to force
the gas past the second conduit seal. The gas exited into an electrical substation building, which was not
rated for hazardous atmospheres (this non-hazard area is similar to the Quebec control room). When the
operator tried to de-energize the pump that was leaking, the circuit breaker produced an electrical arc that
ignited the natural gas.

The rapid phase transition event and subsequent fire ignition at the Nevada Test Site was unlike other
events in this section. This was a test, an intentional release for examining gas dispersion. The gas was
inadvertently ignited by an unanticipated ignition source, most probably involving static electricity and a
broken guy wire. The probable ignitor was very unusual. Gas explosion ignitors are more often pilot light
flames, electric lights, internal combustion engines, hot work or sparks produced by industrial operations,
etc., rather than static discharges.

5.9. Conclusions

LNG facility designers should try to improve designs based on operating experience in other facilities that
handie natural gas. While the LNG vehicle fuel industry lays claim about varying widely from LNG
peakshaving plants (refueling stations are much smaller, have more constant throughput, do not use heated
vaporizers), there are some issues to address from these events.

First, materials must be compatible with LNG. This lesson has been learned at a terrible price from the
Cleveland event. Proper materials would include the supports for the tanks, so that tanks do not fail when
a significant spill cools down the supports.

Next, the possible routes of natural gas flow must be analyzed for the entire station, including reverse flow
events. Liquid and gas must both be considered. There have been events where the LNG traveled down a
conduit (Cove Point), LNG traveled down a line thought to only contain gaseous natural gas (Raunheim),
events where gas traveled down a line thought to be closed (Portland), and a line thought to use only air or
nitrogen (Quebec). Leaks from instrumentation, and into instrumentation cabinets, must be analyzed.
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Facilities should be analyzed for gas entrapment. The Staten Island event was a disaster because the
trapped methane increased the bumning rate of the polyurethane, so the forty workmen did not have the time
1o evacuate once the insulation caught fire. Trapping a combustible gas increases the likelihood of a
powerful deflagration, or even a detonation event. In either event, the barriers that trap the gas will see
overpressures. Trapped gas at a refueling station might be in the annulus of double walled piping, in
control panels, inside pump compartments, under awnings or other roof assemblies that protect personnel
and equipment from weather, in vehicle maintenance buildings, or other places. Gas vaporizing from a
liquid pool is a safety concern, since the liquid pool could flow toward low areas (maintenance pit,
depression in the surrounding ground, a sewer opening, etc.).

Use of more, rather than fewer, combustible gas indicators is a good safety practice around non-odorized
natural gas. It is expensive to buy and maintain these gas sensors, but investigators believed that if a
working unit had been in the substation building at Cove Point, a life would have been saved, and sensors
in the control room at the Quebec plant would have saved the company much money, by avoiding personnel
injury and plant repairs.

Ignition sources must be analyzed for their possible contribution to accident events. The Nevada event
provided an opportunity to analyze tapes from video cameras and movie cameras, and the energy of an
RPT to determine if these energy sources could ignite a natural gas fire or explosion. The analysis showed
that the voltages of cameras were insufficient to cause a spark energetic enough to ignite natural gas vapor,
and the RPT pressure wave was also thought to not produce enough energy for ignition. Still, as unlikely
as an ignition source might be, if it is identified then it can be protected or possibly precluded. Power poles
with transformers for service drops, street lights, electrostatic discharge, and other potential sources of
ignition energy must be investigated to determine if they possess enough energy to ignite natural gas vapor.
The issue of bonding and grounding must be reviewed.
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Table 5-1 Events and Causal Factors Table for the Cleveland Ohio Event

Time and Date Event Causal factors
1890-1940 East Ohio Gas Co. supplies Cleveland a business venture
with natural gas for residential and
industrial uses
1940 East Ohio Gas Co. is using four 20-inch pipelines are the most efficient
diameter and 18-inch diameter lines to means for gas transport
pipe natural gas from the Hope Natural
Gas Company, 150 miles away.
pre-1940 The Bureau of Mines demonstrated that science of cryogenics
liquefying natural gas was practical by ‘
their use of helium liquefying equipment.
1937 The Hope Natural Gas Co. investigated a possible business venture
building a natural gas liquefaction pilot
plant.
January 1940 The Hope pilot plant in Comwell, WV is
completed.
January- The pilot plant delivers liquefied natural success gives credibility to the
February 1940 gas (LNG), demonstrating how natural concept
gas can be stored in a compact liquid
form in amounts that are relevant to gas
company operations.
February 1940 East Ohio Gas Co. decides to build a winter had been harsh and gas
' liquefaction, storage, and regasification demand was high
plant (LSR) to handie peak demands of
gas in the wintertime.
An extra high pressure pipeline to
the Hope Co. would cost $2.5 M,
an LSR plant cost an estimated
$0.75 M.
February 1940 East Ohio Co. selects site at its No. 2 Site was chosen for its improved
works in Cleveland. gas distribution to Cleveland
The liquefaction, storage, and Tank sizing was not discussed,
regasification (LSR) plant uses three presumably this size meets peak
spherical tanks, each stores 50 M cubic demands
feet of gas equivalent.
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Table 5-1 Events and Causal Factors Table for the Cleveland Ohio Event - cont.

Time and Date Event Causal factors
September 1940 Construction began on LSR plant
January 1941 LSR plant completed, largest in the world
February 7, 1941 First LNG produced at LSR plant
December 8, U.S. enters World War I
1941
1942 - 1943 LSR plant proves to be successful Storage of LNG is showntobe a
good means for peakshaving
Spring 1943 East Ohio Gas Co. decides to add another War industry is a large scale user
large storage tank to meet the city's peak of natural gas
demands while meeting baseload war
industry demands
Spring 1943 East Ohio Gas Co. chose a cylindrical, Very large spherical tanks, due to
toro~segmental tank of 90 M cubic feet of their supports, can experience
gas equiv. It was labeled as tank No. 4. excessive bending stresses at the
girdle and also have fatigue with
fill and drain cycles
Spring 1943 The tank designer chose to use steel (carbon ~ Technology at the time
<0.09% and nickel of 3.5%) since this recognized these metals for
metal had adequate low temp. properties, cryogenic service:
adequate strength, and lowest cost pure copper
bronze
Monel metal
red brass
stainless steel
steel (<0.09% carbon
and > 3.5% nickel)
Summer 1943 Tank No. 4 has difficulties with rock wool
insulation settling, another 2 to 2.5 rail cars
of rock wool are needed to complete the
msulation. Over 1 M pounds of rock wool
are used for the 42 ft high and 70 ft
diameter tank
October 1943 Tank No. 4 is placed in service
October 19, 1943 Tanks 2, 3, and 4 have been "topped off." preparation fo;' winter

These tanks are isolated from the LSR
plant.
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Table 5-1 Events and Causal Factors Table for the Cleveland Ohio Event - cont.

Causal factors

Four employees witnessed vapor or liquid
mist cloud issuing from the tank prior to its
complete collapse.

Witnesses saw clouds of vapor first and fire
subsequently. Witnesses also saw a
burning cloud and burning vapor above
flowing liquid. The fires ignited buildings
and equipment.

LNG surged over the short dam around the
tank, then sought low levels. LNG poured
into storm sewers, vaporized, and later
ignited.

Note: final damage was 128 fatalities, 200
to 400 injured, and property damage of
about $6.8M. The fire damage was
confined to about 0.25 mile around tank
No. 4.
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Time and Date Event
8 a.m. October Tank pressures are: 2.5,2.5,2.6,and 2.4
20, 1943 psig, respectively
October 20, 1943 Tank No. 1 is being "topped off." preparation for winter
1: 50 p.m. Mr. Freightner, assistant plant engineer, Tank No. 4 has had cold spot
October 20, 1943 makes a casual inspection of the Tank No. formations due to insulation gaps
* 4 footings, nothing unusual observed.
-2 p.m. October LSR plant is being taken off line. Service is completed
20, 1943 ’
2:25pm. LSR compressors taken off line. part of the shut down evolution
October 20, 1943
2:25pm. Liquid level in Tank No. 4 drops suddenly. Investigators believe that the time
October 20, 1943 was slow or the chart was not
' aligned, all witnesses verify that
it was 2:40 p.m., and the outer
wall of the tank would not hold
the LNG for 15 minutes.
2:40 p.m. Tank No. 4 failed, releasing about 1.1 M Investigators believed the cause
October 20, 1943 gallons of LNG at -250 F. was failure by embrittlement.
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Table 5-1 Events and Causal Factors Table for the Cleveland Ohio Event - cont.

Time and Date Event Causal factors -
about 3 p.m., Tank No. 3 supports failed, causing the heat of fire and possible impacts
October 20, 1943 tank to fail and discharge its contents, of objects swept along by the

about 600k gallons of LNG surge from tank No. 4
October 21, 1943 The main body of the fire was brought

October 22, 1943

October 22, 1943

Mid-November
1943

under control. Gas vents from tanks No. 1
and No. 2 were still burning, and the coal
pile south of tank No. 2 continued to burn

Smoke from No. 2 tank was determined to
be burning cork insulation. Dry ice was

added to the tank annulus to extinguish the.

cork combustion.

Rehabilitation was initiated. Steam from
locomotives on the tracks to the north was

used to vaporize the LNG in tanks 1 and 2.

The empty tanks were purged with inert
gas.
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Table 5-2 Events and Causal Factors Table for the Staten Island Event,

Time and Date Event Causal factors

August 1960 The Texas Eastern Transmission possible business venture
Company (TETCo) hires the Battelle
Memorial Institute (BMI) to conduct a
technical and economic feasibility study
for large volume LNG storage.

October 1961 BMI reports that such storage is feasible.

Summer 1962 BMI constructs a 53,780 galion model
tank for proof of principle.

August 1962 The model tank is completed.

August 1962 to Model tank is successfully tested using

November 1963 liquid nitrogen.

Early 1963 BMI began to design a large commercial
LNG storage tank.

May 1964 BMI publishes a detailed design.

1964 TETCo secures Brown and Root
Engineers to develop the engineering and
construction details for this tank.

1964 TETCo retains Bilbyme Corp.,

' " professional engineers, to apply for NY
approval and construction permit.

1965 Bilbyme delivers request to the Federal

Power Commission (FPC). FPC invites
Bureau of Mines to comment on request.

1966 Bilbyme files request to construct with the
NY City Dept. of Marine and Aviation.

October 18, NY City Dept. of Marine and Aviation

1966 (DMA) denies application to construct
tank.

October 19, Bilbyrne appeals denial to the NY City

1966 Board of Standards and Appeals (BSA).
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Table 5-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Time and Date Event Causal factors
December 14, The NY City BSA forwarded information
1966 to the NY Fire Department (FD),
requesting comment

December 1966 The NY FD requests help from the NY
Board of Fire Prevention Regulations
(BFPR).

December 21, FPC approves plans and specifications.

1966

January 18, NY FD notifies the BSA that it opposes Objections:

1967 tank construction. tank large size and its unfamiliar
construction materials, initial
hydrostatic pressure and 5 year
tests could not be done, lack of
NY FD experience with such
large LNG storage tanks, siting in
congested area, and inability of
the NY FD to extinguish a major
tank fire

Early 1967 BSA holds hearings, FD opposes tank see above causes
construction
Early 1967 TETCo makes safety additions for FD:
two roads, fire extinguishment systems,
fire alarm company, other additions
March 10, 1967 BSA approves tank installation, leaves
construction responsibility to DMA and
fire protection to the FD
April 15, 1967 DMA approves construction plans.
July 1, 1968 DMA approves construction start
Early 1969 FPC announces U.S. shortfall in natural
gas supplies, condones importation as a
means o meet demand
June 1969 During tank construction, a NY FD ASTM D-1692-69T standard is

inspection reveals that the tank insulation not met
will burn. The FD objects that

construction specifications are not being

met. Tank is 80% complete, insulation is

already installed.
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Table 5-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Time and Date Event Causal factors
June 1969 TETCo responds that the insulation was a
fire retardant grade furnished by the
supplier while attempting to meet the
necessary density and thermal
conductivity requirements.
June 1969 The BFPR decides to accept installation Schedule pressure to finish tank,
asitis. combustible insulation is most
hazardous in construction
(insulation was already in place),
BFPR ruled that it was more
hazardous to replace the
polyurethane insulation than to
complete the tank.
Summer 1969 Construction delays with liquefaction unspecified delays
- plant prevented filling the tank by pipeline
gas liquefaction
Fall 1969 TETCo requests LNG importation liquefaction plant cannot fill the
permission from the FPC tank for the winter.
March 31, 1970 i"PC approves TETCo plan to import
LNG.
April 1, 1970 Algerian LNG arrived on the ship "Esso
Brega", loaded into tank
April, 1970 More LNG arrives on the ship "Methane
Princess," loaded into tank
April, 1970 TETCo's liquefaction plant comes on line,
starts filling tank with LNG
October 20, TETCo notes that instrumentation shows Speculated cause is insufficient
1970 that there is a leak in the tank liner at the slack in liner when constructed
52'4.25" level.
February 17, The NY BFPR rules that the tank should
1971 be emptied for repair by April 1, 1971,
stipulates that an extension could be
obtained if proof is offered that there is no
hazard.
March 1, 1971 TETCo requests an extension to the date Reports from BMI and TETCo
for emptying tank. engineer show there is no hazard.
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Table S-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Time and Date Event Causal factors
March 29, 1971 BMI submits report that there is a liner
leak, not a tank leak.

April 27, 1971 BFPR grants extension to April 1, 1972,
require that TETCo look at issue again in
September.

September 1, Bilbyrne and BMI submit reports to

1971 BFPR, reports state there is no cause for
concern.

September 1, TETCo requests permission for a business venture

1971 temporary pipeline for loading the tank :

with Libyan LNG.

November 10, BFPR gives tentative approval to the

1971 pipeline request.

January 5, 1972 BFPR gives full approval to the pipeline

request.

January 1972 Libyan tanker does not arrive Unknown reasons, speculation
was lack of LNG tankers or a
purchasing problem

January 1972 TETCo decides to repair the storage tank Good timing to prepare for

leaking liner upcoming winter.

February 13, TETCo removes tank from service, Make the tank habitable

1972 warms tank with hot natural gas.

March 14, 1972 NY FD reviews safety plan from TETCo

March 15, 1972 The tank is purged with nitrogen Remove combustible gas

March 1972 An inert-gas entry is made into the tank to Speedy problem definition, to aid

identify the leak location. Leaks could not TETCo in decision making.
be located in those conditions.

April 5, 1972 TETCo decides to bring the tank to air to

help locate the leak
April 11, 1972 NY FD reviewed safety procedures for
TETCo work

April 1972 TETCo asks BMI to perform an analysis Safety/operability concern over

of insulation insulation
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Table 5-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Event

Time and Date Causal factors

April 1972 TETCo found a 10' 3" rip of the liner at Speculated cause was insufficient
the tank bottom, and several small slack in the liner.
punctures.

April 1972 TETCo decides to repair the tank's liner, Desire to return tank to optimum
water-stop, and pumps, and modify the condition, prepare tank for colder
tank to allow it to receive heavier LNG LNG
{more ballast blocks, new unloading
downcomers and nozzles, a splash plate]

May 1972 and To make repairs, portions of the 1" Access required for repair

on protective polyurethane were removed, operations, this act exposes
then the mylar liner was rolled up from insulation that is now believed to
the tank bottom to about 8' height to be saturated with vapor
expose more polyurethane insulation

May 15, 1972 BMI concludes that polyurethane The insulation samples were from
insulation contained 3.5% methane in the the 1" cover on the LNG side of
cells. Insulation was NOT saturated with the mylar liner, not the tank
methane.

Summer-fall Apparently repairs are behind schedule, Reasons unknown, not addressed

1972 tank is not ready to store LNG for the in investigation
winter season

January 16, A NY FD inspection shows that all safety

1973 ' precautions within FD jurisdiction
appeared to be observed. FD ascertained
that the tank would be ready for service
by the end of March 1973.

January 25, Two laborers punched small holes into the They confessed that they did this

1973 tank liner act because they wanted to

prolong the well-paying job

February 10, Early morning hours, the Wells Fargo fire Welding tasks were scheduled

1973 alarm company is notified to ignore any onsite and these often tripped the
fire alarms from the plant until further UV fire detectors.

notice.

91




Table 5-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Time and Date Event Causal factors
February 10, About 1300 hours, a fire starts inside the Rapid burning fire: investigators
1973 tank believe that methane trapped in the

' polyurethane cells under mylar liner
allowed easy ignition and fast burn,
also the vertical orientation allows
fire to pre-heat fuel and spread
rapidly; Low barometric pressure
may have allowed methane to
evolve from the bared insulation

February 10, At about 1310 hours, two workers on the
1973 tank's interior scaffolding stairway used
for tank floor access notice
flame/disturbance on tank's south wall.
They evacuate.
February 10, The tank internal pressure increases over Fast burning fire in wall
1973 1 psig, lifts the tank roof. Evidence msulation
suggests that this happened very fast
(about a minute) after the fire flared up.
February 10, Tank roof cracks, collapses into the tank Roof was not being supported as
1973 designed
February 10, An operator notices smoke issuing from
1973 the top of the tank, he pulls the Wells
Fargo fire alarm and goes to get the plant
fire truck,
He realizes the plant fire truck will be
ineffectual against such a large fire, he
heads to the tank to assist injured
personnel.
He radios the control room to phone the
Wells Fargo alarm company so that they
will turn in an alarm.
A crane operator returning from lunch
notices smoke and goes to a pull box to
send in a fire alarm.
February 10, 1313 hours, NY FD receives an alarm for
1973 an explosion and fire at the TETCo LNG

facility
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Table 5-2 Events and Causal Factors Table for the Staten Island Event. - cont.

Time and Date Event Causal factors
February 10, 1321 hours, NY FD is on the scene.
1973 Second alarm is ordered. Hose lines are
put in operation toward the smoke.
February 10, 1346 hours, FD orders third alarm
1973
February 10, 1430 hours, hose lines were shut down. Reduce water accumulation in the
1973 Smoke still obscures any view into the tank
tank.
Febrary 10, After 1430 hours, the crane for this tank Survey the tank interior for
1973 lowers FD Rescue Officer into the tank. survivors
The rescue officer wore breathing
apparatus.
February 10, The officer saw no signs of life. Medical Examiner report states
1973 the 40 men died from
asphyxiation.
February 10, 1700 hours, smoke dissipated enough to
1973 view the bottom of the tank.
February 10, 1725 hours, sunset.
1973
February 10, After sunset, Rescue Company personnel
1973 were lowered into the tank for a search.
February 11, 0100 hours, searchers found 4 bodies. Searchers realized that conditions
1973 Searchers realized no survivors would be of smoke and roof collapse would
found. They discontinued operations until not allow survival of workers in
daylight. the tank.
February 21, The last of the 40 victims was located at Efforts were hampered by cold
1973 0645 hours. temperatures and extreme
difficulty of moving roof sections
February 23, 1643 hours, the search was ended. The search continued after the
1973 40th victim to verify that no
unreported personnel were in the
tank when the fire occurred.
April 11, 1973 1645 hours, TETCo completed cleanup

operations on the tank.
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Table 5-3 Events and Causal Factors Table for the Cove Point, Maryland Event.

Time and Date Event Causal factors

November 1977 Calvert County electrical inspector approves Apparently these were built
the pump electrical junction boxes and their to electrical code
seals at the Cove Point LNG facility. requirements.

The code had little provision
for cryogenic applications.

March 31, 1978 The Cove Point LNG storage facility of the business venture
Columbia LNG Corporation began operation.

July 11, 1978 The booster pump 105JK was removed for Type of repair was not
repairs. specified.

Fall 1978 The pump was reinstalled, the electrical There were no standards or
penetration seals were rebolted, but not to any guides for tightening seal
particular standard. ' bolts.

October 5, 1979 6 a.m., The booster pump 105JK is shut down. normal operational evolution

October 6, 1979 1:30 a.m., the facility operator taking normal operator duty
equipment readings did not notice anything
unusual.

3:10 a.m., another facility operator starts normal operator duty
making rounds for taking equipment readings.
3:20 a.m., the operator radios the monitor Incorrectly tightened seal
house to tell the operator/controller there that allowed LNG to leak into the
LNG is leaking into the second stage pump electrical cable junction box.
house.
Junction box flange was not
rated to hold the 60 psig
pressure.

3:25 a.m., the shift supervisor, who was in the
monitor house to hear the radio call, radioed
the operator to find out if pump 105JK was
leaking. He told the operator that he would
contact the monitoring house by telephone
from the electrical substation.

3:30 a.m., the supervisor and the operator
arrived at the Substation No. 2 building.
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Table 5-3 Events and Causal Factors Table for the Cove Point, Maryland Event - cont.

Time and Date

Event

Causal factors

October 6, 1979

About 3:30 a.m., the supervisor phoned the
controller/operator in the monitoring house to
advise him that they were going to open the
circuit breaker for the 105JK pump.

3:34 a.m., the operator depressed the circuit
breaker interlock release.

3:34 a.m., an explosion occurred.

3:34 a.m., building walls blew out, building
roof collapsed. The shift supervisor was
struck by a falling roof truss. The operator
was burned.

3:34 a.m., the explosion damages facility
transformers adjacent to the Substation No. 2
building, oil from the transformers is dispersed
and begins to burn.

3:34 a.m., the explosion damaged a water main
to the deluge system, and the transformer loss
depowered the electric firewater pump, leaving
only the diesel firewater pump. The fire system
is rendered totally ineffective by this damage.

3:35 a.m., monitoring house 1 and 2
operators ascertained that the explosion was
their facility and initiated emergency shut
down.
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Supervisor wanted to prevent
possible pump startup

Spark from breaker ignited
natural gas vapors in the
room.

Natural gas was in the
Substation building because
the electrical cable conduit
routed it there.

Second seal in the conduit

was not a cryogenic seal and
was not rated for over 0.25

psig.

explosion overpressure

explosion overpressure and
heat

explosion overpressure




Table 5-3 Events and Causal Factors Table for the Cove Point, Maryland Event ~cont.

Time and Date

Event

Causal factors

October 6, 1979

October 6, 1979

October 6, 1979

About 3:40 a.m., the safety and fire technician
with the plant fire truck meets the
controller/operator from monitoring house

No. 2 at the Substation No. 2 building. They
assisted the operator from the fire.

The safety and fire technician tried to reach
the supervisor but the intense heat prevented
this. He then discharged one ton of dry
chemical fire extinguishing agent onto the fire
in an attempt to extinguish the fire (with no
effect) and then he waited for the Solomons
Volunteer Rescue Squad and Fire Department
(SVRSFD) to arrive.

3:45 a.m., Columbia company officials in
Wilmington, Delaware were informed of the
event

3:56 a.m., the Solomons Volunteer Rescue
Squad and Fire Department (SVRSFD) arrived
and the Captain assumed on scene command.

3:56 a.m., the Columbia fire and safety
supervisor arrived on scene. He spotted the
supervisor's body under one of the building roof
support beams. He judged that the supervisor
was beyond help.

About 3:56 a.m., the plant manager arrived. He
checked facility status and went to the accident
scene. Then he went to monitoring house No 1
and saw the burned operator.

After 4 a.m., the plant manager ordered all off-
duty personnel to report to the facility and that
the facility be secured.

4:30 a.m., the fire was extinguished by the
SVRSFD.
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Plant personnel were
confused. The supervisor
had been killed and there was
no plan for anyone else to
assume command.




Time and Date

Event

Table 5-3 Events and Causal Factors Table for the Cove Point, Maryland Event -cont.

Causal factors

October 6, 1979

About 4:30 a.m., the operations superintendent
informed the plant manager of the LNG leak in
the pump house.

These two men walked to the pump house and
saw the junction box and conduit covered with
frost, the concrete surrounding the conduit was
frozen, and LNG spraying about 12 feet out
from the junction box flanges.

The 105JK pﬁmp inlet valve was closed and
the LNG flow stopped shortly afterward.

About 6:45 a.m., Columbia officials from
Delaware arrived and surveyed the scene.

About 7:40 a.m., these officials realized that no
one had called the DOT Materials
Transportation Board as required by federal
regulations. :

About 7:50 a.m., Columbia officials called the
DOT Materials Transportation Board (MTB)
to notify them of the explosion.

7:55 a.m., the DOT MTB phoned the National
Transportation Safety Board (NTSB) to inform
them of the event.

8:15 a.m., an NTSB investigator was
dispatched to the scene.

11:45 am., SVRSFD departed from the
Columbia LNG facility.

insufficient communication o
safety-relevant information

insufficient emergency
response plan




6. THE IMPACT OF USING LIQUEFIED NATURAL GAS IN THE
CONTEXT OF GLOBAL CLIMATE CHANGE

6.1. Introduction

While natural gas (methane) emits less carbon dioxide per unit of energy released than other
transportation fuels, methane itself is a powerful greenhouse gas, capturing infrared radiation in the
atmosphere and re-radiating that infrared back toward the surface of the earth. Thus the benefits of lower
carbon dioxide emissions from the use of natural gas can be lost if a significant fraction (greater than 5
percent) of the methane leaks or is vented in the course of production, refining, storage, and use. This brief
section will describe the effects of fugitive methane as a greenhouse gas, summarize the sources of fugitive
methane at LNG refueling stations, and suggest some basic means of controlling these fugitive emissions.
A full discussion of all these subjects was beyond the funding allowed to complete this report and they are
mentioned for completeness and as a potential sign of future environmental issues in the use of LNG.

6.2. Carbon Emissions per unit Energy

Methane is richer in hydrogen than gasoline, diesel or other conventional fuels. Thus, during
combustion the fuel forms more water vapor and less carbon dioxide per unit energy delivered than any
other conventional transportation fuel. Only pure hydrogen would release smaller amounts of greenhouse
gases per unit energy delivered. Table 6-1 lists the carbon released to the environment as carbon dioxide
per unit energy.

Table 6-1 Carbon Emissions per unit Energy Output

Carbon Emissions per unit Energy Output
Higher heating Molecular Carbon Carbon Emissions
value

|Hydrocarbon (MJ/kg) Weight (g CMJ)
methane 55.5 16 12 13.5
ethane 519 30 24 15.4
propane 50.4 44 36 16.2
methanol 227 32 12 16.5
ethylene ) 50.3 28 24 17.0
ethanol 29.7 45 24 176
gasoline 47.5 114 96 17.7
acetylene 50.0 26 24 185
toulene 43.0 93 84 21.0
benzene 423 78 72 21.8
coal 24.4 - 80% 32.8

98




6.3. Methane as a Greenhouse Gas

Carbon dioxide, methane, and most other gasses absorb light at certain frequencies of the infrared
region and re-radiate that energy isotropically. Because each of the gases has certain ‘windows’ of
wavelength at which the light is passed and other bands in which the light is strongly absorbed, the various
gasses have widely differing characteristics as greenhouse gasses. In addition, the chemical activity of the
gasses and the rate at which they are oxidized or are washed out of the atmosphere determine an average
lifetime of each gas. Without further releases the concentration of a gas will decrease exponentially. A
comparison of the direct effect of eight gasses is shown in Table 6-2. The gasses of interest in this study
are carbon dioxide, methane, and nitrous oxide.

Table 6-2 Global Warming Potentials

Numerical Estimates of Global Warning Potentials Relative to Carbon Dioxide
Gas Lifetime Direct Effect for Time Horizons of
_ {vears) 20 years 100 years 500 years

Carbon Dioxide 120 1 1 1
Methane 14.5 62 245 7.5
Nitrous Oxide 120 290 320 180
Carbon Tetrachloride 42 2000 1400 500
Methyl Chloroform 54 360 110 35
Methylene Chloride 0.41 28 9 3
Chloroform 0.55 15 5 1
Sulfur Hexafluoride 3200 ' 16500 24900 36500

Source: D. L. Albritton, et al. "Trace Gas Radiative Forcing Indices,” in J. T. Houghton, et al., Climate

Chang_Le 1994 (Cambﬁdgg, UK, Cambridge University Press, 1995) p. 222.

6.4. Means of Reducing the Amount of Methane Released

The amount of carbon dioxide released is largely governed by the fuel chosen and the nitrous oxide
releases are governed by the temperature of combustion, the stoichiometry, and the type of engine. All
these parameters are outside the control of the refueling stations designer and operator. The releases of
methane, on the other hand, can be controlled by the procedures chosen for venting, the LNG transfer
techniques, the venting of vehicle tanks, the conversion of vented LNG into CNG, the catalytic combustion
of vented methane, and the design of transport, storage, and vehicle LNG tanks. We observed a wide
variation in techniques for controlling pressure and venting methane vapors in our nine station visits. In
some stations the methane vapors were compressed and used in the CNG station in the same facility. In
others, the rate of vehicle use was high enough that both the storage and the vehicle tanks remained cold
and very little venting (or compression) was necessary. In one of the stations, the vehicle tanks were
routinely vented in order to lower vehicle tank pressure and speed refueling.

Finally, Table 6-2 demonstrates that carbon dioxide is a relatively weak greenhouse gis, compared
with the others listed. A comprehensive approach to reducing the effects of fossil fuel combustion must
consider all greenhouse gases and not just CO,.
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7. CONCLUSIONS AND RECOMMENDATIONS
7.1. Study Results

A number of potentially risk significant refueling station accident scenarios have been identified in
this study. These scenarios, listed in Tables 3~4 and 3-5 and summarized in Tables 1-2 and 1-3, are not
believed to be likely, due to the relatively low likelihood of some of the initiating events (e.g., relief valves
failing open, tank/piping failure due to a severe external event) or to the requirement for multiple failures in
the scenario (e.g., an initial error during refueling followed by failure of early recovery efforts). However,
based on reports and past events involving LNG or other gaseous vehicle fuels, it appears that these
scenarios are not so unlikely as to be incredible’ Designers of new facilities and operators of existing ones
need to ensure that their facilities are adequately protected with respect to both scenario initiation and

progression.

This study also shows how observed differences in station design, operational practices, and siting
can affect the likelihood of different initiating events and safety barrier (top event) failures, thereby
affecting station risk. Example differences in design involve the extent and size of bunds for spill
containment and the location of maintenance facilities. Some potentially important differences in
operations and operational practices involve the frequency of refueling activities, the accessibility of the
station to the public, and the emergency response training of vehicle refuelers (drivers or designated staff)
and other station personnel. Differences in station siting can affect the likelihood of external hazards to the
station as well as the exposure of the public to station accidents.

Finally, this study has reviewed a wide range of documents relevant to LNG safety issues recently
raised by Hunt (see Section 4.6). Focusing just on LNG safety, it appears that at least two of these issues
(vapor cloud ignition and injuries/fatalities due to exposure to an LNG vapor cloud) are reasonable
concerns and need to be addressed in station design, operations, and siting. However, it should be
cautioned that this study, being qualitative in nature and focused on LNG, has not addressed the issues of
absolute risk (e.g., what is the probability of the events in question) or relative risk (e.g., how does the
LNG risk compare with risks from conventional fuels). A quantitative analysis is needed before the true
safety significance of these issues can be determined.

7.2. Recommendations

The following recommendations are based on the results of this study. They involve: a) potential
design and operational improvements at LNG refueling stations; and b) additional studies that need to be
performed to clarify key issues. Regarding the design and operational improvements, it is recommended
that:

j. It should be noted that lessons learned from major past incidents involving LNG have been used to improve designs and
equipment. The investigation following the 1944 Cleveland release and explosions led to the use of steels that would not
become brittle at 112°K (BOM, 1546). The accident at Cove Point in 1978 led to the rewriting standards for the sealing
conduits and for the calibration of methane detectors (Van Meerbeke, 1982).
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Improvements should be made in procedures and training. Variances in operational practices that
may have an impact on safety (e.g., tank venting, use of grounding wires, use of PPE), improper responses
to alarms, and the lack of procedures during maintenance (which leads to learning by trial and error) are
potentially important safety issues that need to be addressed. It is useful to observe that i improvements in
training and procedures are relatively inexpensive means to reduce risk.

In particular, we observed a rather casual attitude toward working in confined spaces at some
stations. With the potential for displacement of air by cold methane, confined spaces should be approached
with more respect. We also saw some instances of common industrial hazards, such as unrestrained
compressed gas cylinders and inappropriate fittings for high pressure use. While the physical
characteristics of LNG should make it safer than gasoline, LNG is new and unfamiliar to the general
public. Thus any accident at an LNG station could set the vehicular LNG industry back a decade.

The observations from visits to nine refueling stations having various configurations have been
compiled. All the stations served a well-defined fleet of vehicles and did not cater to the general public,
although the degree of public accessibility varied from station to station. In six of the stations the refueling
was done by a designated, specially trained fueler. It is our considered observation that refueling should be
done by a specific, trained person. The handling of LNG is sufficiently different from the handling of
gasoline to require specific training. After the LNG industry has grown for a few years in the relatively
protected niche of fleet operations, it will be ready of public, sclf-serve retail operations. At the present
time, however, a single, well-publicized incident at an LNG station in which a member of the public is
injured or killed would set the LNG industry back decades.

Station designs should account for: a) the possibility of LNG leakage along unexpected pathways
(e.g., past seals) to enclosed spaces, and b) the possibility of complete LNG inventory losses. Although
neither event is likely, they have been historically observed (albeit in different facilities) and prudence
dictates that they be addressed. This recommendation implies, for example, the use of methane detectors in
all enclosed spaces, designing/backfitting to prevent the buildup of methane in all enclosed spaces
(assuming a leak), and the provision of appropriately sized bund walls completely surrounding the main
LNG storage tank(s).

The dissemination of best practices among stations should be strongly supported. This
recommendation supports the preceding ones, and is driven by the same issues.

The above recommendations are based on field observations at nine different LNG refueling stations
and on information gathered from a number of papers and reports. The stations visited represent a fairly
wide sample in terms of design, operational, and siting characteristics, although only one of the stations
was openly accessible to the public. A number of follow-on safety studies are therefore recommended.
These studies will validate and modify, as appropriate, the conclusions of this study, and will provide a
stronger basis for suggested changes in current practices.

In addition to these safety studies, additional studies regarding key phenomenology during LNG
accidents are recommended. These latter studies are needed to more completely address the issues raised in
the Hunt memo (Hunt 1996). Moreover, they will provide invaluable support to qualitative and
quantitative risk assessment efforts which need better answers to such questions as how large must a spill
be to pose a significant hazard offsite.

The particular studies recommended for the near term are as follows.
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An in-depth review of LNG accident/event reports (case studies) was performed in section 5.
More work should be done with this review to support assessment of accident scenario
likelihood.

A detailed review on post-1978 experimental data relevant to predicting LNG hazards. This
review, which will identify sources, models, and codes, will provide a more definitive picture
of what is known concerning LNG dispersion and ignition behavior under realistic accident
conditions. This is needed to determine the risk significance of the two Hunt memo issues of
potential concern (i.e., unconfined vapor cloud fires or explosions and direct exposure to LNG

vapor).

Finally, it is recommended that the following two studies be performed as time and resources permit.
- 'While they are of lesser urgency than the preceding studies, their results should be very useful to the

industry.

A study should be performed to determine which current safety practices (e.g., use of
grounding strap) are truly necessary. For those which are needed, steps should be taken to
ensure compliance. This study addresses the possibility that overly conservative requirements
may lead to an indiscriminate attitude towards all safety requirements on the part of some
drivers and station personnel.

The qualitative scenarios identified in this report should be quantified for LNG and
conventional (gasoline and diesel) refueling stations. Such a risk assessment will allow an
improved prioritization of accident scenarios, and will support detailed design and operational
trade-offs. It will also provide an improved basis for evaluating the overall safety of LNG
fueling stations.
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Deflagration

Detonation

Rollover

Simmer

Sparger

Trycock valve

Weathering

8. BASIC DEFINITIONS

Combustion of a gaseous mixture of fuel and oxygen, where the combustion wave front is
subsonic. '

Rapid combustion of a fuel-oxygen mixture where the combustion wave front travels at the
sonic velocity. Detonations are regarded as much more severe than deflagrations because
of the overpressure and rapid liberation of thermal energy.

Flow surges of a vapor-liquid mixture in vertical tubes cansed by heat inleakage and the
formation of bubbles within the liquid.

Filling an enclosed space, such as a tank or room, with a gas that will not support
combustion. Nitrogen and argon are examples.

Delayed, but vigorous mixing of new and old LNG caused by differences in composition
and temperature. A :

A condition where a relief valve is opening slightly and reclosing due to system pressure
hovering near the valve setpoint.

A piping arrangement that introduces a fluid into a tank at many positions simultaneoﬁsly.
LNG tanks use spargers either in the top of the gas ullage or at the bottom of the tank in
the liquid.

A small valve used to draw samples.
Vapor space at the top of the tank.

Change in the composition of stored LNG due to the more rapid vaporization of methane
compared with ethane, propane or the higher hydrocarbons.
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APPENDIX A - Failure Modes and Effects Analysis for Facility Number 1

This appendix contains a Failure Modes and Effects Analysis (FMEA) performed for the Facility 1
fuel dispensing system. Details of that system are contained in Figure 2-1 and Table 2-6. The analysis
considers each component and postulates the system effects or responses to the various ways in which the
component could fail. The FMEA provides some insights into the failure modes and behavior of the
components in the system. '

There are many valves in the system, including over 30 manual valves, 12 relief valves, 3 check
valves, and 5 flow control valves. The FMEA shows that these valves, which constitute about two-thirds
of the system components are only a safety concern if the failure mode is external leakage or relief valve
venting. LNG valve data must be reviewed to determine if external leakage (i.e., stem leakage or valve
body cracking) are frequent events that warrant attention.

The other components include rupture disks, instruments, fill connections, the pump and meter, and
the tanks. Instruments could be a source of concern if they leak at penetrations, leak from instrument taps,
or give false indications. The connection lines appear to be benign, used infrequently, and provided with
isolation valves. Any pump and meter failures require the opening of the pressure tank for repair or

replacement, but do not appear to pose safety concerns.

In general, most of the failures hypothesized in the FMEA result in the inability of the system to
deliver fuel to end use vehicles (EUVs) or to receive incoming fuel shipments. While this downtime is an
operational inconvenience, it is not a safety concern. Catastrophic events, such as pump impeller
catastrophic failure followed by impeller debris piercing the pressure tank (PT) wall, were not considered
because this is not a typical failure mode for a centrifugal pump. The system analyzed is not very complex
and has little automated control.

One insight from the FMEA is that there are a number of single point failures that can lead to a
release of LNG. In particular, the pressure relief valves for the storage tank (ST) and PT are single
barriers between the LNG and the atmosphere. These relief valves are vented up the facility stack (which
helps to loft the gas for dispersion); any failure of these vaives is a single failure leading to a release. For
example, a valve might successfully open to relieve a mild system overpressure, but then fail in the open
position (e.g., due to buildup of ice from atmospheric humidity). As a second problem, if the valves are not
well insulated, ice could build up on them when they are closed; causing them to remain closed when they
are demanded to open. This could also be true for the rupture disks. Relief valve failure rates tend to be,
low (on the order of 10™ to 10® per demand) but there are several of these valves in the fuel dispensing
system.

A second insight concerns the degree of redundancy provided by the standard double-walled
storage tank construction. If air or LNG leaks into the vacuum space between the two walls, a heat
transfer path will be provided to the inner tank. Without mitigative action, eventually the LNG in the tank
will boil and vent. (This problem is well recognized; tanks must typically be refurbished in 5 to 7 years.)
Furthermore, the outer vessel walls are generally constructed of carbon steel to reduce the cost of the tank,
and so are susceptible to brittle fracture if cooled to LNG temperatures. Thus, a failure of the inner vessel
will lead to a release of LNG into the vacuum space which, in turn, can lead to failure of the outer vessel.
The double wall does not mean double containment in the case of cryogens.
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Appendix B - Fault Trees for Initiating Events
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Legend:

IE
XX.
XX

Appendix D - Large Consequence Scenarios

= initiating event

= failure of top event "XX"

= guaranteed failure of top event "XX"
= success of top event "XX"

= guaranteed success of top event "XX"




Table D-1. Scenarios Leading to Large Releases

! IE i Tog Events !Notes I
CAI | Dominant CAT |

/ED'_|ER' [/SI__|LR | /RC_ | Dominant CAI
ED'_|ER"_[/SI IR |RC
FD'_|ER_|SI LR |/RC
ED'_|ER'_[sI IR |RC
/SI_|LR" | /RC | Dominant CAU
FD'_|ER'" |/ |LR | RC .

ED'_|ER'_|SI _|IR | /RC
ED'_|ER' |SI _|IR |RC
ER__|/SI__| LR | /RC
ER'_|/SI__|LR | RC

/ED

_/ED LR
JED JER ST LR |/RC
ED | ER'_[SI _|LR |RC
ED__|ER_|/SI__|LR' | /RC_ | Dominant EE
ED _|ER /ST _[LR [RC
ED_|ER |sI |LR |/RC
ED |ER _|SI__I|IR |RC
/ED

/ED

/ED

/ED

“ED

ED

ED

D

oBRERRE
g
st

ER /ST _|IR | /RC | Dominant HF
ER_I/SI_|IR |RC
ER
ER

si_|[LR | /RC
SI__|ILR | RC
ER'_|/I_[LR | /RC
ER_|/S1_|LR |RC
ER' _|[s1 LR [/RC
ER' _[sI IR I|RC

e e e el e e e e

/ED' |ER_|/SI_|LR | /RC_| DominantOD
ED _|ER_1/I |IR |RC
ED _|ER _|s1  |ILR |/RC
/ED' |ER_|sI IR |RC
OF | /D |ER _|/SI_|LR | /RC_ | Dominant OF
OF |/®D |ER |/SI_|LR |RC
OF |/FD |ER |SI |LR |/RC
OF | /MFD |ER_|SI |[LR [RC
OF |ED |ER |/SI_|LR |/RC
OF |ED |ER [/SI_|IR |RC
OF |FED |ER _[SI__|LR |/RC
OF |ED |ER |SI _|{LR |RC
OM |/ED |ER_[/S1_|LR | /RC | Dominant OM
OM |/D |ER /I |LR |RC
OM |/ED |ER ISI |LR |/RC
OM |mD |ER ST _|LR |RC
OM_|ED | ER _|/SI__|LR | /RC | DominantOM
OM |ED_ |ER [/ST_|LR _|RC
OM |FD |ER [SI__|LR | /RC ]
OM IED J|ER |SI IR |RC

D-2




Table D-1. Scenarios Leading to Large Releases (cont.)

IE Top Events Notes
- PF1 /ED | ER /S1 LR /MRC | Dominant PFI
PFL_|/ED |ER /ST |IR |RC
PFL /ED | ER SI LR RC
' PFI /ED | ER SI LR RC
PF1 ED ER' /S1 LR /RC | Dominant PFI
PF1 ED ER’ /S1 LR RC
PFI ED ER' SI LR RC
PFE_|ED |ER |SI_[LR IRC
PFU | /ED | ER /S1 LR’ /RC | Dominant PFU
PFU_| /ED_|ER' | /SI__|LR | RC
PFU_|/ED |ER_|SI__|LR | /RC
PFU | /ED | ER’ S LR’ RC
PFU_|ED_ |ER |/SI |LR |/RC
PFU | ED ER' /SI LR’ RC
PFU |ED | ER’ SI LR /RC
PFU | ED ER’' St LR’ RC
SFI D | ER /S1 IR /RC | Dominant SFI
SFI ED | ER /S1 LR RC
SFI /ED | ER SI LR /RC
SFI_| /D |ER_1SI _|ILR |RC
A SFI_|ED | ER /Sl _|LR | /RC_ | Dominant SFI
SFI ED ER' /SI LR RC
SFI ED ER’ SI LR /RC
SFI ED ER’ SI LR RC
SFU | ED | ER' /SI LR’ /RC | Dominant SFU
SFU | /ED | ER’ /ST LR RC
SFU | ED | ER’ SI LR’ /RC
SFU | /ED | ER' |SI LR’ RC
SFU | ED ER' | /S] LR /RC
SFU | ED | ER__|/SI__|LR | RC
SFU | ED | ER SI LR’ RC
SFU | ED ER’ SI LR RC
ST__|/ED " |/sT_ IR | /RC | Dominant ST
ST /ED | ER' /81 LR' RC
ST /ED ER' SI LR’ /RC
ST | /ED | ER SI LR’ RC
ST _|ED | ER_[/SI_|IR | /RC
ST ED ER' /SI LR’ RC
ST ED ER’ SI LR /RC
ST ED ER' SI LR’ RC
TIF | /D | ER' | /SI | LR' | /RC' | Dominant TTF
TTF /ED ER’ SI LR’ /RC'
TIF_|ED | ER | /SI_[LR | /RC
TIF _{ ED ER' SI LR’ /RC'




Table D-1. Scenarios Leading to Large Releases (cont.)

IE Top Events Notes

TIT |/ED | ER' 1/S1 |LR' | /RC | Dominant TIT
TIT |/ED |ER' |/SI _|LR |RC

TIT |/ED |ER' |SI |LR |/RC

TIT |/ED |ER |SI LR' [ RC

TIT |ED |ER I/1 |ILR |RC

TIT |ED | ER {/SI |LR' |RC

TIT |ED | ER |SI LR' | /RC

TIT | ED_|ER' | SI LR" | RC

VA |/ED |ER' |{/SI |LR' |/RC | DominantVA
VA |/ED |ER /I LR |IRC

VA |/ED' |ER' |SI LR' | /RC

VA |/ED |ER | SI LR' |IRC

VFI_|/ED |ER |/81I |LR_|/RC | Dominant VFI
VFI _|/ED |ER {/I |LR {RC

VFl |/ED |ER |SI LR | RC

VFI _|/ED |ER |8I LR I RC

VEL |ED |ER' |/S1 IR |/RC | Dominant VFI
VFI |ED_ |ER' |/S1 |LR |RC

VFI_|ED | ER' |8l LR | RC

VFI |ED |ER |8I LR I RC

VFU {/FD_ |ER' [/8I |LR' |/RC | Dominant VFU
VFU |/FD_|ER' |81 |ILR' |RC

VFU |/ED |ER' |SI LR' | /RC

VFU |/ED_ | ER' |SI LR' | RC

VFU |ED |ER /ST |LR | /RC

VFU |ED_|ER' |/ST |LR' |RC

VFU |ED _|ER' | SI LR' | /RC

VFU |ED |ER' | SI LR' | RC




Table D-2. Scenarios Leading to Large Releases with Onsite Ignition

IE Top Events Notes

. CAl [/ED' [ER'_[SI LR |/RC_ | Dominant CAI
CAI |/ED' |ER' _|sI |IR [RC
CAU |/FD' [ER' ST |LR [ /RC | Dominant CAU
. CAU |/ED' |ER'_[SI__|IR |RC |_
EE_|/ED J|ER' _|si |LR | RC
'FE_|/ED _|ER_|sI__ LR |RC
'EE |ED |ER'_|SI__|LR' | /RC | DominamEE
'EE_|ED _|ER'" |SI _|LR |RC
'HF _[/FD |ER_|SI 1R | /RC_ | Dominant HF
HF |/ED |ER_|SI _|LR |RC
HF |ED |ER |SI LR |/RC
'HF _|ED |FR_|SI__|ILR |RC
OD | /D |ER ST |IR | /RC | DominantOD
oD_|/ED |ER_|sI__|LR |RC
OF | /D |[FR _|sI _|IR |/RC | DominantOF
OF |/D |ER_|SI IR |RC
OF |ED |ER |SI IR |RC
OF |ED |ER sl _|IR |RC
OM |/D |ER _|SI _|IR |/RC_ | DominantOM
oM |/EDp |ER ISl |ILR |RC
) OM |ED |ER' Sl _|IR | /RC | DominantOM
OM |ED |ER |SI IR |RC
PFI_|/ED |ER _|SI _|ILR |/RC | Dominant PFI
PFI_|/ED |ER__|SI__|LR |RC
PEL_|ED | ER'_|SI__|LR | /RC_| Dominant PEI
PFI_|ED [ER_|SI _|LR |RC
PFU_| /ED | ER'_|SI | LR | /RC_| Dominant PFU
PFU_| /ED ~ st |LR | RC
PFU_|ED | ER_ |SI__|IR | /RC
PFU |ED |ER' [SI |IR |RC
S| /D |ER_|SI__|LR |/RC_| Dominant SFI
SFi_|/ED |ER _|SI__|IR [RC
SFI_|ED |ER |8l |LR | /RC_| Dominant SFI
SFI_|ED |ER_|SI__|IR |RC
SFU | /ED | ER'_|SI__|LR' | /RC_ | Dominant SFU
SFU_|/ED | ER'_|SI LR | RC
SFU_|ED | ER'_|SI__ | LR | RC
SFU |ED | ER' |SI IR |RC
ST _|//D |ER_|SI _|LR |/RC | DominantST
ST _|/ED |ER [SI |LR' [RC -
- ST_|ED I|ER_|SI__|LR |/RC
ST _|ED |ER |SI _|LR |RC
TIF _|/ED |ER'_|SI _|LR | /RC' | Dominant TTF
TIF_|ED | ER' Sl |LR |[/RC




- Table D-2. Scenarios Leading to Large Releases with Onsite Ignition (cont.)

Top Events Notes

! SI LR' /RC | Dominant TTT
SI LR' RC

ER’ SI LR' /RC _
S1 LR’ RC .
SI LR’ /RC | Dominant VA
SI LR’ RC
SI IR /RC | Dorninant VFI
SI LR RC
SI IR /RC | Dominant VFI
SI LR RC
SI LR’ /RC | Dominant VFU
SI LR’ RC

SI LR’ /RC
SI LR' RC
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Table D-3. Scenarios Leading to Large Offsite Releases

IE Top Events Notes
- CAI | /ED" | ER’ /SI LR RC Dominant CAI
CAl | ED' | ER SI IR RC
CAU | ED' | ER' /[SI | LR RC Dominant CAU
- CAU | [ED' | ER S1 LR RC
| EE ER' /ST LR’ RC
| EE ER' SI LR’ RC
 EE ER’' /SI LR RC Dominant EE
EE | ER’ SI LR’ RC
| HF ER /S LR RC Dominant HF
HE ER_|sT IR [RC
HF ER’ /81 LR RC_
HF ER’ SI LR RC
| OD _ER /S1 LR _{RC Dominant OD
OD ER | SI LR RC
OF ER /S1 LR RC | Dominant OF
OF _ER SI LR RC
OF ER’ /SI LR RC
OF ER' |SI LR RC
OM ER /SI LR RC Dominant OM
oM ER_|sI _|IR _|RC
oM ER’ /81 LR RC Dominant OM
’ oM ER'_|sI LR | RC
PF1 ER /S1 LR RC Dominant PFI
PF1 ER SI LR RC

ER_|/SI_|LR | RC | Dominant PFI
ER_|SI iR [RC
ER' |/SI IR’ |RC | Dominant PFU
ER_|SI LR |RC
ER__|/SI__|LR" |RC
ER_|SI _|LR [RC
ER
ER

/SI_|LR | RC | Dominant SFI
SI__|LR _|RC
ER' | /SI_|IR | RC | Dominant SFI
ER_|SI_|LR _|RC
ER'_|/SI_|LR' | RC | Dominant SFU
ER'_|SI__|LR_|RC
ER'_|/S1__|LR' | RC
ER_|SI__|ILR |RC
ER'_|/s1__|LR'" |RC | Dominant ST
ER'_|SI IR |RC
ER'_|/SI__|LR" |RC
ER_|SI__|LR | RC
ER"_|/S1__| LR | RC | Dominant TIT
ER'_|SI __|LR | RC
ER'_|/SI_|LR |RC
ER'_|SI _|LR _[RC

i
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Table D-3. Scenarios Leading to Large Offsite Releases (cont.)

l IE ! . Tog Events !Notes i

VA | /D |ER [/SI__|LR | RC | DominantVA
VA _|/ED |ER' |SI IR |RC
VFL |/ED |ER /I _|LR | RC | Dominant VEI
VFI |/ED |ER _|SI _|LR |RC
VFI_|ED |ER /ST |LR |RC | DominantVFI
VFI_|ED_|ER |sI _|LR [RC
VFU |/ED |ER' |/SI_| LR | RC | Dominant VFU
VFU | /D JER' |SI_|IR |RC
VFU |ED |ER |/SI_|LR _|RC
VFU |ED_IER _|SI _|IR |RC
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